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Abstract. We present an analysis, based on a phenomenological set of Generalised Navier-Stokes equations,
of Heterodyne Detected Transient Gratings on supercooled molecular liquids of anisotropic molecules.
This set of equations generalises equations proven in Franosch, Latz and Pick [24] for the same type
of liquids. It also takes into account the three different sources generated by the laser pumping process
pertinent for these experiments. We give analytical expressions for the response functions that can be
measured using the different polarisation of the experimental set-up. Specialising to the case of parallel
polarisation (where longitudinal phonons are launched), we show that each response function is a sum
of the same seven “elementary response functions” (ERFs) whose time and temperature evolutions are
individually analysed. We also show that the response functions corresponding to two of the sources can
be directly connected to the Laplace Transform of a light scattering signal. The ERFs generated by the
heat-absorption process, which is the third source, are of a different nature. They do not have the same
time and temperature behaviours and they can provide, inter alia, unique information on the rotation-
translation coupling function characteristic of these liquids.

PACS. 64.70.Pf Glass transitions – 78.47.+p Time-resolved optical spectroscopies and other ultrafast
optical measurements in condensed matter – 61.25.Em Molecular liquids

1 Introduction

In the early 1970s, researchers discovered the possibility
of inducing in a material a transient grating, (TG), i.e. a
periodic spatial modulation of its optical properties, us-
ing the interaction of the material with the interference
field produced by a couple of laser pulses [1]. It was later
realised [2–4] that one could monitor the relaxation to-
wards equilibrium of this induced grating and thus mea-
sure important information on the dynamical properties
of the material. The transient grating technique is a very
useful and flexible method to investigate the dynamics of
isotropic materials because one can measure, in a selective
way, many of its dynamical properties depending on the
characteristics of the material and on the frequency of the
laser used to induce the grating.
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In particular, Nelson and co-workers [5] proposed to
study the dynamics of supercooled liquids by a TG tech-
nique in which a short (≈100 ps) pulse formed of two co-
herent light beams, with the same polarisation and prop-
agating in slightly different directions, interfere in the
liquid. The coherent interference field generates a den-
sity grating with wavevector �q. The latter is probed by
a second light beam and the time evolution of the am-
plitude of the diffracted beam is the response function of
the experiment. In the case discussed in [5], the optical
grating is due to two effects. One is an electrostrictive
interaction at optical frequency: it launches longitudi-
nal phonons of equal amplitudes propagating with op-
posite wavevectors ±�q. Their interference creates a time-
dependent density grating. The corresponding response
function has been called [3] the ISBS (Impulsive Stim-
ulated Brillouin Scattering) response because both ISBS
and Brillouin scattering probe the dynamics of these lon-
gitudinal phonons. The second effect, called [4] ISTS
(Impulsive Stimulated Thermal Scattering) works in a
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somewhat different manner: a weak part of the intensity
of the interference field is absorbed by the liquid and it
is transformed into heat within a few picoseconds. A tem-
perature grating with the same wavevector is thus created,
which again launches these longitudinal phonons. How-
ever, as density changes with temperature, the thermal
grating is also responsible for a density grating that dis-
appears through the heat-diffusion process i.e. after times
much longer than the phonon lifetime; the ISTS response
function is thus basically different from the ISBS one.

Working out an elementary theory of these effects,
Nelson and co-workers found that a TG-experiment could
lead to two different methods of measuring the structural
relaxation of a supercooled liquid. These are efficient on
different time scales to measure the α-relaxation time, i.e.
the time rate characterising the final decay of its relax-
ation. The first one uses the decay of the longitudinal
phonons originating from both the ISBS and the ISTS
effects as it was already mentioned in the original pa-
per of Yan, Cheng, and Nelson [5]. This method is lim-
ited to relaxation times in the 10−2−10 ns range and
it was the starting point of a whole series of studies on
α-relaxation dynamics in different glassformers (see, e.g.,
Ref. [9] in [6]). Duggal and Nelson [7] later realised that
the ISTS signal could also provide information, on a much
longer time scale (typically 1 ns to 106 ns), on a second re-
laxation time that they named “thermal expansion time”.
Though this second time was also measured in the TG-
experiments as early as in 1991, the interpretation of the
data still concentrated on the short-time window of the
measurements. In 1995, Yang and Nelson [6] showed, on
the basis of the set of equations used in [5], that this long
relaxation time is due to the coupling of the structural re-
laxation to temperature. Their analysis was an important
break through because it opened the possibility of mea-
suring a collective relaxation time, τ , in a time window
where alternative methods fail. It yielded precise results
for 10 ns < τ < 104 ns, while Photon Correlation Spec-
troscopy (PCS), the only alternative technique, is limited
to τ > 102 ns. Since that time, six different supercooled
liquids [8–13] have been analysed along this line.

Let us summarise the coupling that leads to this long
time signal. The emitted phonons generated by the ISBS
and ISTS effects decay through two channels. One corre-
sponds to the fast anharmonic processes in ordinary liq-
uids, characterised by a relaxation time τanh ≈ 10 ps,
essentially temperature independent. The second is the
phonon coupling to the structural relaxation of the liquid,
whose characteristic time, τ , strongly increases with de-
creasing temperature. When τ becomes much larger than
τanh, the latter dominates the phonon decay which be-
comes insensitive to τ . Meanwhile, the amplitude of the
thermal grating decreases through the heat-diffusion pro-
cess, characterised by the heat-diffusion relaxation time,
τh � τanh. When τanh < τ < τh, the amplitude of the
emitted phonons has decayed to zero at a time t when
the thermal grating has kept its initial shape and am-
plitude. Yet, for t ≈ τ , the density has not equilibrated
with the temperature grating. As the change in the in-

dex of refraction is linearly related to the change in den-
sity, the amplitude of the index grating will increase on
a time scale τ up to its equilibrium value. This is exem-
plified in Figure 5a where the increase of the signal in
the 102−104 ns time window for the curves τL = 102 ns
and τL = 104 ns is visible while those curves have been
computed with τh = 3.3 × 104 ns and τanh = 5 ns (see
Sect. 4.4). To summarise, the interplay between the struc-
tural relaxation and the long-lived thermal grating allows
for a direct measurement of this structural (or rather, as
we shall see below, of the “longitudinal”) relaxation time,
τL. This interplay was, in fact, already pointed out in the
pioneer work of Allain et al. [2] who gave a correct inter-
pretation of the phenomenon. Though they thus recorded
the first ISTS signal1, their time resolution allowed them
only to detect its long time decay.

Until 2001, the interpretations of the TG response re-
lied (see [6]) on a series of approximations, one of them
being that the anisotropy of the particles forming the
liquid could be ignored. This resulted in the indepen-
dence of the response function on the polarisation of
the different beams involved in the experiment. Two re-
cent HD-TG (Heterodyne Detected) experiments [12,14]
on supercooled liquids have shown that this approxima-
tion had to be reconsidered. Indeed, those experiments
were performed with liquids formed of strongly anisotropic
molecules (salol and m-toluidine). Controlling the polari-
sation of all the laser fields (pumps, probe, and diffracted
beams) showed the existence of long time signals that de-
pended on these polarisations. The difference between the
signals could only originate from orientational dynam-
ics of these anisotropic molecules which gives rise to an
anisotropic contribution to the dielectric tensor on the
time scale of the ISTS signal. These two experiments
demonstrated an effect that had been anticipated, in par-
ticular in [15]: analysing an experiment that mixed the
simple geometry of an Optical Kerr Effect and the heat
absorption inherent to an ISTS experiment, these authors
pointed out the importance of introducing a coupling be-
tween the density and the molecular orientation to explain
a similar dielectric anisotropy in the transient response
obtained with supercooled salol.

The role of anisotropic molecules and, in particular,
of the anisotropy of their molecular polarisability ten-
sor in detecting local fluctuations in dense liquids had in
fact been known for a very long time. The existence of
the Rytov dip [16], first seen in depolarised light scatter-
ing experiments by Starunov et al. [17] and by Stegeman
et al. [18], had been demonstrated, as early as 1971 [19,20],
to originate from the coupling of a local shear to a local
molecular orientation, the latter being detected through
the corresponding polarisability anisotropy. Later on,
Enright and Stoicheff [21] showed that the same effect, in
supercooled liquids, provided a mechanism for the detec-
tion of transverse phonons. Yet, a proper description of the
effect over the whole temperature range explored in those
experiments only appeared in 1999 [22]. This description

1 The TG-technique is called, in their work, forced Rayleigh
scattering.
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required a generalisation of the usual Navier-Stokes equa-
tions that takes simultaneously into account, in a con-
sistent way, both the molecular orientational dynamics
and the retardation effects implied by the frequency de-
pendence of the transport coefficients entering into these
equations. Some of the present authors (C.D. and R.M.P.)
showed that the set of generalised Navier-Stokes equations
they proposed was necessary to properly describe both the
low viscosity (normal liquid) and the high viscosity (su-
percooled liquid) experiments, and that the polarisability
anisotropy mechanism was sufficient to explain the whole
depolarised light-scattering spectrum. More recently, this
set of equations was demonstrated to be derivable from a
Mori-Zwanzig analysis of the dynamics of a liquid formed
of anisotropic molecules [23,24].

The coupling between molecular orientation and shear
deformation also creates an optical anisotropy in the case
of an inhomogeneous density fluctuation. Though this sec-
ond effect has been known for a long time, the role of the
polarisability anisotropy in Brillouin lineshape of longitu-
dinal phonons has only recently begun to be studied [23].
It turns out that the generalised Navier-Stokes equations
proposed in [22] are a convenient way to handle this prob-
lem [25] and to describe the extra features implied by this
coupling. The latter have very recently been recorded and
analysed in supercooled salol [26]. The explanation of the
HD-TG experiments reported in [12,14] relies on the same
orientation-translation coupling. Reference [13] contains a
brief summary of the results that the generalised Navier-
Stokes equations lead to in the case of such an exper-
iment, while [14] presents a more primitive explanation
based on a less systematic use of the molecular anisotropy
(see Sect. 6).

The present paper is the first of an ensemble of
three [27,28] in which a general scheme is developed for the
calculation and analysis of HD-TG experiments performed
on supercooled liquids composed of anisotropic molecules.
In this case, one takes advantage of the different possible
polarisation of the pumps, probe, and detected beams to
obtain a maximum of information. We give in this first pa-
per a phenomenological version of the theory and analyse
some consequences of this description when, as in [24,25],
the scattering of light is only due to density and orienta-
tion modulations. In particular, we show that:

– different response functions, obtained with different
polarisation of the pumps, probe, and detected beams,
may be recorded when one studies such molecular su-
percooled liquids;

– each response function splits into a weighted sum of the
same seven “elementary response functions” (ERFs);

– for any parallel polarisation of the pumps, on the one
hand, and of the probe and diffracted beams, on the
other hand, the contribution of five of these ERFs can
be related, through the Fluctuation-Dissipation theo-
rem, to a CW light-scattering spectrum. This contri-
bution constitutes the “generalised ISBS” part of the
response function;

– one can also define “generalised ISTS” response func-
tions that only depend on the polarisation of the probe

and diffracted beams and are linear combinations of
the two remaining ERFs. They originate from an ir-
reversible process, the heat absorption, and have thus
no equivalent in the light-scattering spectra. They are
responsible for the two long time signals that can be
obtained with different polarisation and each of these
ERFs brings information that could not be obtained
otherwise;

– different scenarios involving relaxation processes not
explicitly taken into account until now might have to
be considered to understand the behaviour of the ISTS
response function at very long time and low tempera-
ture. This effect had been noticed as soon as the origin
of that signal was understood and it has been recently
analysed in [29] within a limited framework.

In order to show these and other aspects of the problem,
this paper is organised as follows:

– Section 2 introduces the phenomenological set of gen-
eralised Navier-Stokes equations, with the correspond-
ing sources and relaxation mechanisms, which have to
be used to interpret those HD-TG experiments;

– in Section 3, we study the number of independent re-
sponse functions that can be recorded by varying the
polarisation of the pumps, probe and detected beams.
We show that each of them is a weighted sum of the
same seven ERFs, each ERF being characterised by
the source that generates it and by the mechanism,
density or orientation fluctuation, through which the
ERF is detected;

– neglecting some relaxation processes, we give in
Section 4 usable expressions for each ERF, ex-
plain their time evolution and show the correla-
tions that exist between them. We define the “gen-
eralised ISBS” response functions and prove the
Fluctuation-Dissipation relation that relates them to
light-scattering spectra. We also define the “gener-
alised ISTS” response functions and show why each
of the corresponding ERFs contains information not
easily obtainable by other techniques;

– in Section 5, we show that most of those ERFs can be
individually obtained as specific combinations of the
response functions measured with different polarisa-
tions. We also show that, when the generalised ISBS
response functions can be neglected, the two gener-
alised ISTS response functions can be broken-up into
an isotropic and an anisotropic signal, one measuring
the longitudinal relaxation time τL in the 10−104 ns
time scale, the second its coupling with the molecular
orientation in the same time window;

– Section 6 compares the present phenomenological for-
mulation to previous ones proposed by Allain et al. [2]
and by Nelson and his co-workers [5–7,14]. It is also
shown that each relaxation process neglected in Sec-
tion 4 leads to additional effects, at very long time and
for low temperature, in the ERFs related to the heat-
absorption process: such effects are similar to those
detected, e.g. in [2,6,11] and analysed in [2,29];

– Section 7 summarises our results.
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2 The phenomenological equations

2.1 Introduction

The expression of the generalised Navier-Stokes equa-
tions necessary to describe the dynamics of a supercooled
molecular liquid formed of axially symmetric molecules
was proposed in [22] and proved in [23,24] in the case
where the time window necessary to describe the experi-
ment is sufficiently short for neglecting the energy conser-
vation problem. This generalisation goes as follows.

Let û be the unit vector (characterised by the polar
angles ϑ and ϕ) defining the direction of the axis of the
molecule and let P (ϑ, ϕ,�r, t) be the probability density
of finding û in that direction at time t, in the vicinity
of �r. One can introduce the set of orientational variables,
Qij(�r, t), defined by

Qij(�r, t) =
∫

sin θ dϑ dϕP (ϑ, ϕ,�r, t) Cij (û(ϑ, ϕ)) , (2.1)

with
Cij(û) = ûiûj − 1

3
δij . (2.2)

By construction, this orientational density has the form of
a symmetrical traceless tensor, ¯̄Q(�r, t). It was shown in [24]
that the linearised Navier-Stokes equations necessary for
the description of the Brillouin spectra in the GHz region
are the two usual conservation laws

δρ̇(�r, t) + div �J(�r, t) = 0, (2.3)

�̇J(�r, t) = div ¯̄σ(�r, t), (2.4)

where ρ is the mass density and δρ is its fluctuation, �J
is the mass current density, and ¯̄σ is the stress tensor.
The latter is expressed, in terms of other variables of the
problem, as

¯̄σ = (−δP + ηb ⊗ div�v) ¯̄I + ηs ⊗ ¯̄τ − µ ⊗ ˙̄̄
Q. (2.5)

In equation (2.4), ¯̄I is the unit tensor.
�J is related to �v through

�J = ρm�v, (2.6)

where ρm is the mean mass density and �v is the linear
velocity of the molecules.

¯̄τ is the strain rate, traceless, second rank tensor

τij =
∂vi

∂xj
+

∂vj

∂xi
− 2

3
div�vδij . (2.7)

δP (�r, t) is the local pressure change, which is related to
δρ(�r, t) by

δP (�r, t) = c2
aδρ(�r, t), (2.8a)

where ca is the adiabatic sound velocity.
ηb, ηs and µ are, respectively, the bulk and shear vis-

cosities, and the rotation-translation coupling relaxation

functions, the symbol ⊗ standing for a convolution prod-
uct in time: e.g., ηb ⊗ div�v stands for

(ηb ⊗ div�v) (�r, t) ≡
t∫

0

ηb(t − s)div�v(�r, s)ds. (2.8b)

An additional equation of motion has to be written for
¯̄Q(�r, t) which reads [24]

¨̄̄
Q = −ω2

R
¯̄Q − Γ ′ ⊗ ˙̄̄

Q + Λ′µ ⊗ ¯̄τ, (2.9)

where:

– Γ ′ is the orientational relaxation function;
– ωR is the libration frequency of the axial molecules;
– Λ′ is the rotation-translation coupling constant, a

quantity that takes into accounts the fact that ρ and
¯̄Q have different dimensions. It was also shown in [24]
that, if one defines the Laplace-Transform of f(t) by

LT [f(t)] (ω) = i

∞∫
0

dtf(t)exp(−iωt), (2.10)

the imaginary parts of Γ ′(ω), ηb(ω), and ηs(ω),
Laplace-Transforms, respectively, of Γ ′(t), ηb(t), and
ηs(t), are positive for all real frequencies, which implies
in particular that their t = 0 value is always positive.

Equations (2.5, 2.9) are the necessary ingredients describ-
ing the long wavelength dynamics of a supercooled molec-
ular liquid when one simply imposes the two constraints of
conservation of mass (Eq. (2.2)) and of linear momentum
(Eq. (2.3)).

As a HD-TG experiment involves a time interval long
enough for the local temperature of the fluid to possibly
vary, the conservation of energy has also to be taken into
account. An equation which explicitly involves the local
temperature must be added to the preceding set. Fur-
thermore, equations (2.5, 2.9) describe the dynamics of
a closed system while, in a HD-TG experiment, one mea-
sures the response of the system subjected to an external
perturbation: source terms have to be added to those equa-
tions. Most of the remaining part of this section is devoted
to generalising this set of equations: in Section 2.2 we shall
build up the generalised Navier-Stokes equations for a su-
percooled molecular fluid of axially symmetric molecules
while the source terms will be added in Section 2.3; the dif-
ferent polarisations of the two pumps that are necessary to
obtain the maximum information from these experiments
will be discussed in Section 2.4.

2.2 The generalised Navier-Stokes equations

As was already the case with the phenomenological deriva-
tion of equations (2.5, 2.9) performed in [22], two differ-
ent problems have to be considered: one is the writing of
a set of equations which conserves mass, linear momen-
tum and energy in a molecular fluid formed of anisotropic
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molecules, without consideration of retardation effects; the
second is the introduction of these retardation effects. We
treat those two problems in turn.

If one ignores retardation effects, equation (2.5) simply
reads2

¯̄σ = (−δP + �
ηbdiv�v) ¯̄I + �

ηs
¯̄τ − �

µ
˙̄̄

Q. (2.11)

As long as the temperature fluctuations could be ne-
glected, δP could simply be expressed as

δP =
∂P

∂ρ

)
T

δρ = c2
i δρ, (2.12)

where ci is the isothermal sound velocity3. When the ther-
mal fluctuations, δT (�r, t), also need to be considered, the
preceding equation has to be generalised to

δP =
∂P

∂ρ

)
T

δρ +
∂P

∂T

)
ρ

δT ≡ c2
i δρ + ρm

�

βδT, (2.13)

where
�

β , with the same notation as above, is the tension
(also called thermal pressure) coefficient. The expression
for the stress tensor then reads

¯̄σ =
(
−c2

i δρ − ρm

�

βδT + �
ηbdiv�v

)
¯̄I + �

ηs
¯̄τ − �

µ
˙̄̄

Q. (2.14)

Let us now consider equation (2.9) without retardation
effects,

¨̄̄
Q = −ω2

R
¯̄Q −

�

Γ ′ ˙̄̄
Q + Λ′�µ ¯̄τ . (2.15)

As ¯̄Q is a second rank, symmetrical, traceless tensor, each
term of equation (2.15) must be of the same form. The
only traceless tensor involving temperature contains, at
least, a second derivative in space. It can be shown to
be negligible for the long wavelength dynamics considered
here so that no term involving temperature needs being
included in equation (2.15).

Finally, for the same reason, an expression linear in ¯̄Q
cannot enter into the equation of conservation of energy,
so that the latter must keep its usual form [30]

�

CV Ṫ − Tm

�

βρ̇ − λ∆T = 0, (2.16)

where
�

CV is the specific heat per unit volume at constant
volume, Tm is the equilibrium temperature of the liquid,
and λ the heat diffusion coefficient.

The introduction of retarded effects in [22] was based
on purely phenomenological arguments. It was claimed
that these effects had to be introduced on all the terms

2 We make use, here, of the notation
�
η b,

�
µ, etc. to stress that

those quantities have the dimension of the time integral of the
corresponding relaxation functions.

3 Note that the isothermal sound velocity, ci, appears here
and not the adiabatic sound velocity, ca, as was the case in
equation (2.8). The reason for this difference has been discussed
at the end of Section 4 of [24], and we shall come back to that
point in Section 4.1.

corresponding to friction. This led us to propose the use of
equations (2.5, 2.9) that have since been rigorously demon-
strated [24].

Introducing memory functions in equation (2.16) by
the same argument as in [22] yields:

CV ⊗ Ṫ − Tmβ ⊗ ρ̇ − λ∆T = 0 (2.17)

which introduces retardation effects in the specific heat4
at constant volume, CV (t), and in the tension coefficient5,
β(t), with relaxation functions that smoothly tend to zero
when t → ∞ (cf. [27]). We must stress that the physics
behind those two retardation effects is different from that
leading to the relaxation functions considered in the pre-
ceding paragraph; their modelling will be briefly discussed
at the end of Section 4.1 and in Appendix D. Such a form
of β(t) also implies that equation (2.14) should be trans-
formed into

¯̄σ = (−c2
i δρ−ρmβ⊗δT+ηb⊗div�v) ¯̄I+ηs⊗¯̄τ−µ⊗ ˙̄̄

Q. (2.18)

The proposed set of generalised Navier-Stokes equa-
tions pertinent to the present problem is thus equa-
tions (2.3, 2.4, 2.9, 2.17, 2.18).

2.3 The Navier-Stokes equations with external sources

In order to derive, in Section 3 and in Appendix C, the al-
gebraic expressions of the different responses that can be
recorded in a TG-experiment when the signal is detected
by density and orientation modulations of the dielectric
tensor, it is convenient to introduce the sources in as gen-
eral a form as possible. These sources are defined by the
interaction of the exciting electric fields of the pumps with
the material and they correspond to several effects that we
discuss in this section. The experimental geometry we con-
sider here is the typical one used in previous works (see
e.g. [11]). It is defined in Figure 1.

The two coherent sources propagate with wavevec-
tors �q1 and �q2 forming a small angle θ. We define the
directions x̂ and ẑ to be the external and internal bisec-
tors of these two wavevectors, ŷ being perpendicular to the
plane Π formed by x̂ and ẑ. If q0 = |�q1| = |�q2|, the electric
field associated with the two pumps can be written

�E1(�r, t) = E1ê
1exp (i(q0z − ωt))exp (iq0x)g0(t), (2.19a)

�E2(�r, t) = E2ê
2exp (i(q0z − ωt))exp (−iq0x)g0(t),

(2.19b)

where g0(t) is an envelope function whose duration is of
the order of a few picoseconds. The total electric field to
which the sample is subjected is

�Eint(�r, t) = �E1(�r, t) + �E2(�r, t). (2.19c)
4 Equation (2.17) is a correct generalisation of equa-

tion (2.16) as long as the thermal fluctuations can be neglected
(see [27]).

5 The heat diffusion coefficient, λ, which is related to a heat
flow, depends on mechanisms that should not be affected by
the structural relaxation processes [27].
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Fig. 1. Geometry of a TG-experiment. The incident vectors,
�q1 and �q2, as well as the directions of the polarisation vectors,
ê1 and ê2, and those of x̂, ŷ and ẑ are shown.

Its interaction with the supercooled liquid gives rise to
three different physical effects. Each acts as a source
that has to be added to one of the equations (2.9, 2.17)
or (2.18). Though some of them have already been de-
scribed in [5] and references therein, and in [14], we re-
peat the whole argument in order to introduce these three
sources within a unified language and in their full gener-
ality.

Let us first introduce the density of local electromag-
netic energy, which is proportional to

U(�r, t) = Re
(

�Eint(�r, t)
)
· Re

(
�Eint(�r, t)

)
, (2.20)

where the bar symbol indicates averaging over one period.
Then, U(�r, t) is easily expressed as

U(�r, t) =
1
2
[
E2

1 + E2
2 + 2E1E2

(
ê1 · ê2

)
cos(qx)

]
g2
0(t),

(2.21a)
where �q = �q1 − �q2 = 2q0x̂ ≡ qx̂. U(�r, t) is the sum of
two terms. One corresponds to a uniform energy density,
of no interest with respect to the problem we treat here
and that will be discarded in the rest of the paper. The
second,

Ug(�r, t) = E1E2

(
ê1 · ê2

)
cos(qx)g2

0(t), (2.21b)

exhibits a periodic spatial dependence with wavevector �q.
Two of the three interactions of �Eint(�r, t) with the liq-

uid are given in term of Ug(�r, t). The first one is the energy
absorption by the liquid. As this absorption is very weak,
the amount of energy absorbed per unit length along the
ẑ direction is uniform. This energy, absorbed by overtones
or combinations of intramolecular vibrations, decays into
thermal energy on a picosecond time scale. The rate of
local heat absorption is thus proportional to the energy
density and we write it in the form

Σheat = 2HUg(�r, t), (2.22)

where H , the heat-absorption coefficient, is a positive con-
stant that depends on the molecular species and on the

laser frequency. This heat acts as an external source that
needs to be added to the r.h.s. of equation (2.17) for the
energy balance to be satisfied

CV ⊗ Ṫ − Tmβ ⊗ ρ̇ − λ∆T = 2HUg. (2.23)

We shall later on refer to the term proportional to H in
the response functions, Rij,kl(t) (to be defined in Sect. 3),
as the heat mechanism.

The second effect to be considered is the optical ana-
logue of the electrostrictive effect, that results from the in-
teraction of �Eint(�r, t) with the relative susceptibility of the
liquid at optical frequency, χ ¯̄I. At every point, �Eint(�r, t)
creates a potential

Vpot(�r, t) = −ε0

2
χ U(�r, t), (2.24a)

where ε0 is the vacuum polarisability. This potential varies
in space owing to Ug(�r, t). The liquid tends to minimise
its energy with respect to this potential by building up
a density modulation with the same wavevector and this
potential leads to a contribution to the pressure (see Ap-
pendix A) that can be written

−2KUg(�r, t). (2.24b)

We show in Appendix A (Eq. (A.6)) that, when the de-
viations from equilibrium of the relative dielectric tensor
are expressed by equation (3.2), K, the electrostrictive
coefficient, is simply proportional to a = ∂χ

∂ρ

)
T
. The pro-

portionality factor is positive as is also, in general, this
derivative. As the pressure contributes to ¯̄σ with a nega-
tive sign, the optical electrostrictive effect modifies equa-
tion (2.18) into

¯̄σ = (−c2
i δρ − ρmβ ⊗ δT + ηb ⊗ div�v) ¯̄I

+ ηs ⊗ ¯̄τ − µ ⊗ ˙̄̄
Q + 2KUg ¯̄I. (2.24c)

The third interaction of �Eint(�r, t) with the liquid is the
Optical Kerr Effect (OKE). The r.h.s. of equation (2.9)
can be seen as the formal derivative of a non-equilibrium
free-energy density with respect to ¯̄Q for the torque and
with respect to ˙̄̄

Q for the two dissipative terms in ¯̄τ and in
˙̄̄

Q. The interaction of �Eint(�r, t) with the anisotropic part of
the molecular polarisability adds a term to the free energy
density that can be written

ΣOKE = −2F �E · ¯̄Q · �E. (2.25)

where F is the OKE coefficient. The torque tensor related
to this additional free-energy density reads

− ∂ΣOKE

∂Qij
=

2F

[
Re (Eint(�r, t)i) Re (Eint(�r, t)j) − δij

3
U(�r, t)

]

≡ 2F
(

¯̄T
)

ij
, (2.26)
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where the second factor in the square bracket originates
from the fact that the l.h.s. acts as a torque on a traceless
tensor so that it must also be a traceless tensor. As was
the case for equation (2.21a), equation (2.26) contains a
term T u

ij(�r, t), uniform throughout the liquid, and a term
T g

ij(�r, t) that has the form of a grating and which is readily
expressed as

T g
ij(�r, t) =

E1E2

2
cos(qx)g2

0(t)

×
[
ê1

i ê
2
j + ê2

i ê
1
j −

2
3
δij

(
ê1.ê2

)] ≡
(

¯̄T g
)

ij
, (2.27)

where ê1
i (respectively ê2

j) is the ith (respectively jth)
component of ê1 (respectively ê2). Equation (2.9) has thus
to be modified into

¨̄̄
Q = −ω2

0
¯̄Q − Γ ′ ⊗ ˙̄̄

Q + Λ′µ ⊗ ¯̄τ + 2F ¯̄T g. (2.28)

Owing to the spatial dependence of ¯̄T g(�r, t), the lat-
ter induces a periodic orientational grating that launches
phonons through the rotation-translation relaxation func-
tion (see Sects. 3 and 4).

In Appendix A, we show that the anisotropic part of
the relative molecular polarisability tensor, b, which en-
ters into the expression of the deviation of the relative
dielectric tensor from equilibrium, equation (3.2), can be
related to the OKE coefficient F in a similar way as ∂χ

∂ρ

)
T

is related to the electrostrictive coefficient K.

2.4 Discussion of the role of the sources

In the preceding section, we have used the most general
form for the amplitude and the polarisation of �E1 and �E2.
In fact, we only need to find how many different polari-
sations and amplitudes are necessary to obtain all the in-
formation contained in a HD-TG experiment. First, equa-
tions (2.21b, 2.27) show that the sources only depend on
the product E1E2: as no information is gained by varying
the relative amplitude of the two fields, we put, for sim-
plicity, E1 = E2 = E for the rest of the paper. The only
remaining variables are then the polarisation vectors.

Since the three equations (2.23, 2.24c, 2.28) are linear,
we are left with the problem of decomposing the sources
into irreducible elements, a weighted sum of which will
represent any configuration of the polarisation vectors.
Because �q1 and �q2 are nearly parallel to ẑ, the projec-
tion of ê1 and ê2 on that direction can be neglected and
one can write Ug(�r, t) and T g

ij(�r, t) under the approximate
form

Ug(�r, t) = E2 cos(qx)g2
0(t)

[
ê1

xê2
x + ê1

y ê2
y

]
, (2.29)

T g
ij(�r, t) = E2 cos(qx)g2

0(t)

[
ê1

xê2
xCij(x̂) + ê1

yê
2
yCij(ŷ)

+

(
ê1

xê2
y + ê1

yê
2
x

)
2

(δixδjy + δiyδjx)

]
. (2.30)

Equations (2.29, 2.30) make it clear that the effect of two
pumps with arbitrary polarisation vectors can be decom-
posed into the sum of three independent elements. One
is ê1

xê2
x, and this corresponds to the two pumps polarised

along x̂, i.e. in the scattering plane. The second element
is ê1

yê
2
y, where the two pumps are polarised along ŷ i.e.

perpendicular to the scattering plane. The last one is
ê1

xê2
y + ê1

y ê2
x and it corresponds, for instance, to one pump

polarised along x̂ and the second along ŷ. We shall thus
only need to consider these three independent configura-
tions in the following sections.

3 The transient grating response

3.1 Introduction

We calculate the different response functions that can be
measured in a TG experiment with heterodyne detection
(see e.g. [11]) by selecting the polarisation of pumps, probe
and detected beams (see e.g. [12]).

In such an experiment, the different sources introduced
in Section 2 are expressed via two modulations, of equal
amplitudes and respective wavevectors �q and −�q, of Ug

and ¯̄T g. Within the general linear response formalism, the
�q modulation (with electric fields E1ê

1 and E2ê
2) acting

at time t = 0, generates at time t a similar modulation
of the ij component of the dielectric tensor, δεij , linearly
related to the electric fields of the two pumps through

δεij(�q, t) = Rij,kl(�q, t)E1E2
ê1

kê2
l + ê2

kê1
l

2
, (3.1a)

where a sum over repeated Cartesian indices is implied.
An identical expression holds for −�q. The previous expres-
sion also implies the impulsive limit for the excitation (i.e.
the square of the envelope function, g2

0(t), introduced in
equations (2.19), is identified with a delta function) and
the Cartesian indices refer here to the axes defined in Fig-
ure 1.

As recalled in Appendix B, for �q parallel to x̂, and
for a spatially local approximation of the dielectric func-
tion, Rij,kl(�q, t), the TG dielectric response function for
wavevector �q, has seven independent elements, namely,

Rxx,xx(�q, t), Ryy,yy(�q, t) = Rzz,zz(�q, t),
Ryy,zz(�q, t) = Rzz,yy(�q, t),
Rxx,yy(�q, t) = Rxx,zz(�q, t),
Ryy,xx(�q, t) = Rzz,xx(�q, t),
Rxy,xy(�q, t) = Rxz,xz(�q, t), Ryz,yz(�q, t).

(3.1b)

Since ê1 and ê2 have no component parallel to ẑ, only
the first six elements appearing in equation (3.1b) can be
launched by the pump beams. Furthermore, convention-
ally, (see, e.g., [11,12]), the probe beam also propagates in
the Π plane of Figure 1 with a wavevector nearly parallel
to ẑ so that the same is true for the diffracted beam. Their
polarisation vectors (corresponding respectively to the in-
dices i and j for the probe and diffracted beams) have
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thus, again, no z component. Consequently, only the five
elements of equation (3.1b) not containing a z index can be
detected and each can be detected independently from the
others. Indeed, with the usual light scattering terminology,
since an index x (respectively y) can be associated with
the H (respectively V ) polarisation of the corresponding
field, the five independent elements can be obtained by
using the (HH, HH), (VV, VV), (HH, VV), (VV, HH)
and (HV, HV) configurations for the two pumps, probe
and diffracted beams, respectively, i.e. with four “paral-
lel polarisation” and one “perpendicular polarisation” of
these beams.

As previously discussed [25], symmetry considerations
require that the fluctuations of the relative dielectric ten-
sor only related to density and/or orientational thermal
fluctuations should be written, in leading order, as

δ ¯̄ε(�r, t) = aδρ(�r, t) ¯̄I + b ¯̄Q(�r, t). (3.2)

We consistently use the same expression when δρ(�r, t) and
¯̄Q(�r, t) are modulations created by the sources. As al-
ready indicated in Section 2.3, the coefficient a equals the
quantity ∂χ

∂ρ

)
T

introduced below equation (2.24b), while b

is the anisotropic part of the relative polarisability per
molecule.

Equation (3.2) opens the route to calculate the differ-
ent response functions listed in equation (3.1b) using the
generalised Navier-Stokes equations with the source terms
included. We first explain why equation (3.2) and the dif-
ferent sources give rise to different response functions, de-
pending on the polarisation of the different beams.

Since heat absorption and optical electrostriction,
which are isotropic, exist only for “parallel polarisation”
of the pumps, they only induce modulations of diagonal
tensors, which couple to longitudinal modes but not to
transverse ones. They thus lead to a density grating and
to a non-zero value of Qxx : δεxx has a non-zero Qxx con-
tribution. Furthermore, since ¯̄Q is a traceless tensor, a
non-zero value of Qxx leads to a non-zero value for Qyy :
δεyy also has a molecular orientation contribution, with a
sign opposite to that entering into δεxx . Thus, each point
of the grating exhibits optical anisotropy.

The third source, the orientational torque, is different
as it can couple to transverse as well as to longitudinal
modes. For parallel polarisation of the pumps, non-zero
values of Qxx and Qyy are generated. Via the rotation-
translation coupling mechanism, this non-zero Qxx ele-
ment is also the source of a longitudinal mode but, as the
elements of ¯̄C depend on the polarisation of the pumps,
the four elements Rii,jj(�q, t) are not identical. For crossed
polarisation of the pumps, the sole source is the orien-
tational torque that only induces non-zero values of Qxy

and τxy . A transverse mode is generated. There is no den-
sity modulation and only Qxy contributes to the local di-
electric tensor: δ ¯̄ε has only non-zero off diagonal elements.
The calculation of Rxy,xy(�q, t) is simpler than for the par-
allel cases and it will be performed in Appendix C.

3.2 Calculation of Ryy,yy(�q, t)

We compute, in this section, δεyy(�q, t) when the polarisa-
tion of the two pumps is perpendicular to the scattering
plane. The calculation is easily performed using Laplace-
Transform techniques (see Eq. (2.10)). The functions we
are interested in are the modulations of the mass density,
δρ(�r, t), of the local temperature, δT (�r, t), and of some
components of ¯̄Q(�r, t) as well as their Fourier-Transforms.
Furthermore, since we deal with a stimulated experiment,
we assume that the modulations generated by the ex-
ternal sources are much more important than the corre-
sponding spontaneous fluctuations: the initial values of all
those quantities will be taken equal to zero. Finally, as the
pumps are polarised along ŷ, the two components of ¯̄C en-
tering into the calculation take the values Cxx = −1/3 and
Cyy = 2/3.

Equations (2.3, 2.4) may be grouped into

−δρ̈(�r, t) = div div ¯̄σ(r̄, t), (3.3a)

which, with the use of a Fourier-Laplace Transform, reads

ω2δρ(�q, ω) = −q2σxx(�q, ω). (3.3b)

This last equation implies that, in equation (2.24c), one
needs to calculate Q̇xx (�r, t) as well as τxx(�r, t), while the
computation of δεyy(�r, t) requires also the knowledge of
Qyy(�r, t) and τyy(�r, t). As the sources only launch longi-
tudinal modes of wavevectors ±�q, (�v ‖ �q), one has

τxx(�r, t) =
4
3
div�v(�r, t) = −4

3
δρ̇(�r, t)

ρm
, (3.4a)

τyy(�r, t) = −2
3
div�v(�r, t) =

2
3

δρ̇(�r, t)
ρm

. (3.4b)

Similarly, for the orientational variable, equation (2.28)
yields

Qxx(�q, ω) = −4
3

Λ′

ρm
r(ω)δρ(�q, ω) − i

3
FE2

D(ω)
, (3.5a)

Qyy(�q, ω) =
2
3

Λ′

ρm
r(ω)δρ(�q, ω) +

2i

3
FE2

D(ω)
, (3.5b)

with

D(ω) = ω2
R + ωΓ ′(ω) − ω2, (3.6a)

r(ω) = ωµ(ω) [D(ω)]−1
, (3.6b)

where µ(ω) and Γ ′(ω) are the Laplace-Transforms of
the memory function µ(t) and Γ ′(t). The r.h.s. of equa-
tion (3.6b) implies that r(ω) characterises the rotation-
translation coupling.

Finally, with similar notations, the Fourier-Laplace
Transform of the heat equation, equation (2.23), reads(

ωCV (ω) + λq2
)
δT (�q, ω) = Tmωβ(ω)δρ(�q, ω) + iHE2.

(3.7)
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Inserting equations (3.5a, 3.7) into the Fourier-Laplace
Transform of the xx component of equation (2.24c) yields,
with the help of equation (3.4a),

σxx(�q, ω) =

−
[
c2
i + ρ−1

m ωηL(ω) − iTmρmωβ2(ω)
ωCV (ω) + λq2

]
δρ(�q, ω)

+
[
− ρmβ(ω)H

ωCV (ω) + λq2
+ i

(
K +

F

3
r(ω)

)]
E2, (3.8)

where we have defined the longitudinal viscosity, ηL(ω), by

ηL(ω) = ηb(ω) +
4
3
ηT (ω), (3.9a)

and the transverse viscosity, ηT (ω), by

ηT (ω) = ηs(ω) − Λ′

ω
D(ω)r2(ω). (3.9b)

Substituting equation (3.8) into equation (3.3b), one ob-
tains

δρ(�q, ω) = −i

[(
i
ρmβ(ω)

λ

H

1 + iωτh(q, ω)

+q2

(
K +

F

3
r(ω)

))
E2

]
P ′

L(�q, ω), (3.10)

with

P ′
L(�q, ω) =

[
ω2 − q2

(
c2
i + ρ−1

m ωηL(ω) + g(q, ω)
)]−1

,

(3.11)

g(q, ω) = −iρmTm
β2(ω)
CV (ω)

iωτh(q, ω)
1 + iωτh(q, ω)

, (3.12)

τh(q, ω) = −i
CV (ω)
λq2

. (3.13)

τh(q, ω) has the dimension of a time, namely the heat-
diffusion time for a grating with wavevector �q. P ′

L(�q, ω)
is the full phonon propagator; it generalises the usual
adiabatic longitudinal phonon propagator, (see [24,25]
and Eq. (4.4)) by introducing through g(q, ω) the heat-
diffusion process and by modifying the adiabatic sound
velocity, ca, into the isothermal one, ci.

Equations (3.10) can be inserted into equation (3.5b)
to obtain Qyy(�q, ω). With the help of δεyy(�r, t), equa-
tion (3.2), one finally obtains

δεyy(�q, t) = E2Ryy,yy(�q, t) = E2LT−1 [Ryy,yy(�q, ω)] ,
(3.14a)

where, by definition6

LT−1 [A(ω)] =
2
π

∞∫
0

Im [A(ω)]cos(ωt)dω, (3.14b)

6 Since our convention of the Laplace-Transform has an ad-
ditional imaginary i term in the exponent, the cosine transform
of the imaginary part of A(ω) can easily be numerically per-
formed.

while

Ryy,yy(�q, ω) =
2i

3
bF

D(ω)
− i

[
a +

2
3

Λ′

ρm
br(ω)

]
P ′

L(�q, ω)

×
[
i
ρmβ(ω)

λ

H

1 + iωτh(q, ω)
+ q2

(
K + F

r(ω)
3

)]
.

(3.14c)

3.3 Calculation of Rxx,yy(�q, t), Rxx,xx(�q, t)
and Ryy,xx(�q, t)

We calculate now the three other elements of the response
function that can be measured when selecting “parallel po-
larisation” of the pumps. To derive Rxx ,yy(�q, t), we need
to evaluate δεxx (�q, ω) with ŷ polarised pumps, a computa-
tion quite similar to the previous one except for the use of
Qxx (�q, ω), equation (3.5a), instead of Qyy(�q, ω). To obtain
Rxx ,xx(�q, t) and Ryy,xx (�q, t), we need to evaluate δεxx (�q, ω)
and δεyy(�q, ω), respectively, with x̂ polarised pumps. The
two components of ¯̄C which enter into the calculation are
then Cxx = 2/3 and Cyy = −1/3.

The four Rii,jj(�q, t) can then be compressed into a sin-
gle formula. Defining εp = 1, (εp = −1) for the probe
and diffracted beams polarised along ŷ (x̂) and εex = 1,
(εex = −1) for the pumps (excitation mechanism) po-
larised along ŷ (x̂), the four response functions can be
expressed as

Rii,jj (�q, t) = LT−1 [Rii,jj(�q, ω)] , (3.15)

with

Rii,jj (�q, ω) = R
(1)
ii,jj (ω) + R

(2)
ii,jj (�q, ω), (3.16)

R
(1)
ii,jj (ω) = b

iF

2
(1 + 3εpεex )

3
D−1(ω), (3.17a)

R
(2)
ii,jj (�q, ω) = i

[
a +

Λ′

ρm
b
(3εp − 1)

3
r(ω)

]
P ′

L(�q, ω)A(�q, ω),

(3.17b)

A(�q, ω) = −
[
i
ρmβ(ω)

λ

H

1 + iωτh(q, ω)

+q2

(
K +

F

2
(3εex − 1)

3
r(ω)

)]
. (3.17c)

R
(1)
ii,jj(ω) is the pure orientational dynamics of the

molecules, independent of the wavevector, which can also
be measured in an OKE experiment. Therefore, we define

ROKE(t) = LT−1[iD−1(ω)] (3.18a)

as the elementary response function, generated by the
torque source, detected by the local mean orientation
of the molecules and which does not depend on the
wavevector.

Similarly, R
(2)
ii,jj(�q, t) corresponds to longitudinal

modes launched by the three sources (whence the appear-
ance of H , K and F in Eq. (3.17c)) and detected through
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density (term in a) and orientation (term in b) modula-
tions. In order to ease the further analysis of Rii,jj(�q, t), it
is convenient to separate it into the weighted sum of seven
“elementary response functions” (ERFs), one of them be-
ing ROKE(t). Each of them is labelled according to a given
excitation mechanism (electrostriction, K, torque, F , or
heat absorption, H) and to the modulation (density, δρ,
or orientation tensor, ¯̄Q) that produces the dielectric vari-
ation. Their generic name, ERF, originates from the fact
that they depend neither on the five coefficients H , K, F ,
a, and b, nor on the polarisation of the experiment.

Let us thus define the six remaining ERFs which, con-
trary to ROKE(t), all depend on the wavevector.

Rdens−ther(�q, t) = LT−1

[
β(ω)P ′

L(�q, ω)
[1 + iωτh(q, ω)]

]
(3.18b)

is the ERF that originates from the heat absorption with
a density-modulation detection mechanism (term in aH of
(Eqs. (3.17)). This response is usually referred to as the
ISTS response function [4]; similarly,

Ror−ther(�q, t) = LT−1

[
β(ω)r(ω)P ′

L(�q, ω)
[1 + iωτh(q, ω)]

]
(3.18c)

originates from the heat absorption, the detection mech-
anism being a net local molecular orientation modulation
(term in bH). Next,

Rdens−dens(�q, t) = LT−1 [−iP ′
L(�q, ω)] (3.18d)

is the ERF that corresponds to the action of the optical
electrostriction (density modulation) detected by a den-
sity modulation (term in aK). It is usually called the ISBS
response function [3]. Similarly,

Ror−dens(�q, t) = LT−1 [−ir(ω)P ′
L(�q, ω)] (3.18e)

is the ERF that originates from the same density modu-
lation and which is detected by a net local molecular ori-
entation (term in bK). Owing to their identical analytical
form

Rdens−or(�q, t) = Ror−dens(�q, t), (3.18f)

where Rdens−or(�q, t) is the ERF generated by the torque
source and detected by a density modulation (term in aF).
Finally,

Ror−or(�q, t) = LT−1 [−ir(ω)P ′
L(�q, ω)r(ω)] (3.18g)

is the second ERF generated by the torque source and de-
tected by a net local molecular orientation but, contrary to
equation (3.18a), it involves a longitudinal mode (term in
bF of Eq. (3.17c)). Let us stress that these last two ERFs,
equations (3.18f, 3.18g), originate from the Fr(ω) term
of equation (3.17c) and correspond to longitudinal modes
launched by the OKE through the orientation-translation
coupling.

Also, equations (3.17) show that the four Rii,jj(�q, t)
functions are all different. In particular, R

(2)
xx ,yy(�q, t) �=

R
(2)
yy,xx (�q, t): there is no symmetry between the pumps and

the detection mechanism. In fact, we shall point out in
Section 4 that some symmetry can be identified in equa-
tions (3.17) because of equation (A.16), which relates F ,
K, a, and b (see Appendix A).

With the help of these ERFs, Rii,jj (�q, t) can be ex-
pressed as

Rii,jj (�q, t) = R
(1)
ii,jj (t) + R

(2)
ii,jj (�q, t), (3.19a)

with

R
(1)
ii,jj (t) = b

F

2

(
1 + 3εpεex

3

)
ROKE(t), (3.19b)

and

R
(2)
ii,jj (�q, t) =

ρm

λ
a H Rdens−ther (�q, t)

+
Λ′

λ
b H

3εp − 1
3

Ror−ther (�q, t)+q2

(
a K Rdens−dens(�q, t)

+
Λ′

ρm
b K

3εp − 1
3

Ror−dens(�q, t)
)

+ q2

(
a
F

2
3εex − 1

3
Rdens−or(�q, t)

+
Λ′

ρm
b
F

2
3εex − 1

3
3εp − 1

3
Ror−or(�q, t)

)
. (3.19c)

4 Discussion — Study of the elementary
response functions

4.1 Preliminary remarks

The purpose of the present section is to link the expres-
sions obtained in Section 3 for Rii,jj (�q, t) with results ob-
tained in [24,25] in order to achieve two goals. One is the
study of the time evolution of the different ERFs. The
second is the separation of Rii,jj (�q, t) into the sum of two
functions. One, that we shall call the “generalised ISBS”
response function, is the contribution of the electrostric-
tion and the OKE sources to Rii,jj (�q, t). We shall relate
it, through the Fluctuation-Dissipation theorem, to Bril-
louin spectra discussed in [25]. The other function, the
“generalised ISTS” response function, originates from the
heat absorption. It has no equivalent in the Brillouin spec-
tra and contains information on ηL(t) and µ(t) in the
10−104 ns time scale, as we shall discuss in Section 4.4.

The relation between the six distinct ERFs, equa-
tions (3.18), and quantities computed in [25] requires a
preliminary discussion because these last quantities have
not been derived with the same set of Navier-Stokes equa-
tions: [25] deals with a Brillouin-scattering experiment,
the frequency domain of which is small enough to ignore
the energy conservation problem. The set of equations
used in [25] is thus equations (2.5, 2.9) in conjunction with
equation (3.2). For the same scattering geometry as used
in Figure 1 (q̂2 and q̂1 being now the directions of the
incident and scattered beams), one obtains using those
equations that, for instance, for a y polarisation of the
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two beams (ê1 ‖ ê2 ‖ ŷ), the scattered intensity is propor-
tional to

Iyy(�q, ω) = I(1)
yy (ω) + I(2)

yy (�q, ω), (4.1)

with

I(1)
yy (ω) =

Im
ω

b2

(
1 − ω2

R

D(ω)

)
〈∣∣Q0

yy

∣∣2〉, (4.2)

I(2)
yy (�q, ω) =

1
ω

Im
{

a2 + q2c2
i

[
a +

2Λ′

3ρm
br(ω)

]

×PL(�q, ω)
[
a +

2Λ′

3ρm
br(ω)

]}
〈∣∣δρ0

∣∣2〉 (4.3)

where

PL(�q, ω) =
[
ω2 − q2

(
c2
a + ρ−1

m ωη̃L(ω)
)]−1

. (4.4)

In these expressions:

• 〈∣∣Q0
yy

∣∣2〉 is the thermal average of (Qyy(t))
2;

• 〈∣∣δρ0
∣∣2〉 is the corresponding quantity for the density

fluctuations of the liquid, and the two quantities are
related by

〈∣∣Q0
yy

∣∣2〉 =
4Λ′

3ρm

c2
i

ω2
R

〈∣∣δρ0
∣∣2〉; (4.5)

• ca and ci are the adiabatic and the isothermal sound
velocities7, respectively (see Eqs. (2.8, 2.12));

• η̃L(ω) is a renormalised longitudinal viscosity (see
Eqs. (4.9) below);

• PL(�q, ω) is the adiabatic phonon propagator and its
relation with P ′

L(�q, ω) will be discussed at the end of
this section.

The comparison between equations (3.15–3.17) for
εp = εex = 1 and equations (4.1–4.3) reveals a great simi-
larity in their structure. In both cases, there exists a first
term, R

(1)
yy,yy(ω) or I

(1)
yy (ω), independent of the wavevec-

tor, which corresponds to the orientational dynamics of
the molecules uncoupled to the longitudinal phonons. The
second terms, R

(2)
yy,yy(�q, ω) and I

(2)
yy (�q, ω), have a similar

structure8: both are the products of three factors. The first
is the same for the two expressions: in a light-scattering ex-
periment, one detects the fluctuations of the dielectric ten-
sor through the same mechanism as the one that diffracts
the probe beam in equation (3.17c). The second factor is

7 Since the energy conservation problem was ignored in [25],
there was no difference between ca and ci and the loose expres-
sion “relaxed velocity, c”, was used in that paper for those two
quantities. When translating results obtained in [25] into the
present language, the results of [27] imply that c has to be re-
placed by ci at every place in the equations we shall use here,
except in the phonon propagator where the adiabatic sound
velocity, ca, appears. All the formulae imported from [25] in
the present section have been transformed according to that
rule.

8 Except for a δ(ω) contribution in equation (4.3), of no im-
portance at this stage of the discussion.

a phonon propagator, the form of which differs in the two
expressions (compare Eqs. (3.11, 4.4)). The identification
of these two propagators in a very large frequency range is
a prerequisite to the rest of this Section that will be sum-
marised below and discussed in Appendix E. The main
difference between R

(2)
yy,yy(�q, ω) and I

(2)
yy (�q, ω) is in their

last factor: the sources corresponding to a light-scattering
experiment are only the density and orientational fluctua-
tions (whence the appearance of terms in a and in b in the
last factor of I

(2)
yy (�q, ω)) instead of being the three sources

explicitly mentioned in equation (3.17c).
We show in Appendix E that P ′

L(�q, ω) can be identified
with PL(�q, ω) for frequencies such that ωτh(q, ω) ≥ 1. This
identification requires first to analyse CV (ω) and β(ω). We
argue in Appendix D, in agreement with [27], that

CV (ω) = iCth
V − iωδCV (ω), (4.6a)

β(ω) = iβth − iωδβ(ω), (4.6b)

where Cth
V and βth are the thermodynamic values of the

specific heat at constant volume and of the tension coeffi-
cient, i.e. the time integral of CV (t) and β(t). δCV (t) and
δβ(t) have the usual properties of time correlation func-
tions. This implies, in particular, that the ω → ∞ limit of
ωδCV (ω) (resp. ωδβ(ω)) is real. Furthermore, one has

0 < lim
ω→∞ [ωδCV (ω)] < Cth

V , (4.7)

so that Im(CV (ω = ∞)) is a positive quantity. A relation
similar to equation (4.7) has no a priori reason to hold for
the tension coefficient though this is frequently the case
and the physical meaning of equations (4.6, 4.7) will be
briefly discussed in Appendix D. Appendix E shows that,
as long as ωτh(q, ω) � 1, P ′

L(�q, ω) can be identified with
PL(�q, ω) provided that one relates in equations (4.4, 3.11),
c2
a to c2

i through

c2
a = c2

i + ρmTm

(
βth

)2

Cth
V

≡ γc2
i , (4.8a)

with:

γ =
Cth

P

Cth
V

, (4.8b)

which is the usual thermodynamical result [30], Cth
p be-

ing the specific heat at constant pressure. Similarly, this
identification necessitates that ηL(ω) be modified into a
renormalised longitudinal viscosity, η̃L(ω), with

η̃L(ω) = η̃b(ω) +
4
3
ηT (ω), (4.9a)

ρ−1
m ωη̃b(ω) = ρ−1

m ωηb(ω) − iρmTm

(
β2(ω)
CV (ω)

− β2(0)
CV (0)

)
.

(4.9b)

Having performed this identification, we also approx-
imate, up to Section 6.3, −iβ(ω) by βth in equa-
tions (3.18b, 3.18c), and −iCV (ω) by Cth

V in equa-
tion (3.13). This last approximation implies that the heat
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diffusion time, τh(q, ω), is no longer frequency depen-
dent. For convenience, we shall simply write it as τh.
Within such limitations and approximations, we can use
the results obtained in [25] on the auto and cross cor-
relation functions of δρ(�q, ω) and Qii(�q, ω) to study the
time evolution of the seven different ERFs defined in equa-
tions (3.18). This will be done for ROKE(t) in Section 4.2,
for the ERFs involving only the density and the torque
sources in Section 4.3, and for those involving the heat
source in Section 4.4. Those studies will be partly simpli-
fied by the use of relationships that can be derived be-
tween some of them. Section 4.5 will finally be devoted to
a more global analysis of Rii,jj(�q, t), as explained at the
beginning of this section.

The neglect of δCV (ω) and δβ(ω), and of the influence
of ωτh(q, ω) on the phonon propagator, is unjustified for
very low frequencies, in particular at low temperature i.e.
for long relaxation times. We shall return briefly to this
point in Section 6.3.

4.2 Time evolution of ROKE(t)

It was shown in [25] that the dynamics of a diagonal el-
ement of the orientational variable contains a part un-
coupled from the density fluctuations. This uncoupled dy-
namics can be expressed (see Eqs. (24, 25) of [25]) as

Qyy(�q, ω) =
1
ω

(
1 − ω2

R

D(ω)

)
Q0

yy(�q), (4.10)

where we have used for Qyy(�q, t = 0) the general notation

f0 ≡ f(t = 0). (4.11a)

Equation (4.10) yields

LT
[〈Qyy(�q, t)Q0

yy(�q)
∗〉] (ω) =

1
ω

(
1 − ω2

R

D(ω)

)
〈∣∣Q0

yy(�q)
∣∣2〉,

(4.12a)
while, by definition

〈∣∣Q0
yy(�q)

∣∣2〉 = 〈Qyy(�q, t)Q0
yy(�q)∗ >t=0. (4.12b)

Our definition of the Laplace Transform implies that

LT
[
ḟ(t)

]
(ω) = i

(
ωf(ω) − f0

)
. (4.12c)

Thus, with f(t) = 〈Qyy(�q, t)Q0
yy(�q)

∗〉, equation (4.12a)
yields

LT

[
d

dt
〈Qyy(�q, t)Q0

yy(�q)
∗〉

]
(ω) = − iω2

R

D(ω)
〈∣∣Q0

yy(�q)
∣∣2〉,

(4.13a)
or, equivalently,

ROKE (t) = − 1
ω2

R

d

dt

〈Qyy(�q, t)Q0
yy(�q)

∗〉
〈∣∣Q0

yy(�q)
∣∣2 , (4.13b)

where the q → 0 limit can be taken in the r.h.s. of this last
equation because the l.h.s. does not depend on �q. Let us re-
mark that, as D(ω) does not depend on this wavevector,
we could have taken already this q → 0 limit in equa-
tion (4.10). We have preferred to keep this superfluous
dependence up to equation (4.13b) because this form will
be useful in Section 4.5.

ROKE(t) is the strictly orientational response function
of the anisotropic molecules to a strong orienting electric
field, i.e. it is the thermal mean value of some orienta-
tional variable at time t if the latter has been perturbed
from equilibrium at time t = 0. Equation (4.13b) simply
expresses the fact that the Fluctuation-Dissipation rela-
tion holds for that variable. This remark, used in conjunc-
tion with the analytic form of ROKE(t), equation (3.18a),
totally explains the shape and the temperature evolution
of that ERF. At short times, ωRt ≤ π/2, ROKE(t) be-
haves as 1

ωR
sin(ωRt): the signal is positive and reaches its

maximum in the vicinity of ωRt = π/2. Conversely, for
longer times, the correlation function has a monotonic de-
cay, characterised by the rotational relaxation time, τR. In
this time window, ROKE(t) has amplitude that decreases
as τ−1

R because of the time derivative appearing in equa-
tion (4.13b).

This time and temperature evolution of ROKE(t) is
exemplified in Figure 2 that has been computed with the
help of equation (3.18a). D(ω) is given by equation (3.6a)
and we express Γ ′(ω) according to a model of the rota-
tional dynamics used in [23]:

Γ ′(ω) =
Γ 2

0

ω

[
1 −

(
1

1 + iωτR

)β
]

+ iν0. (4.14)

In this model, Γ0, ωR, ν0, and β are assumed to
be temperature independent, and are given values
ωR = Γ0 = 2π THz, ν0 = 10π THz, while β = 0.7. The
temperature evolution is taken into account through τR,
which varies by factors 102 from 10−1 ns to 105 ns.

The results are represented in Figure 2 on a log-log
scale. After a linear increase independent of τR, ROKE(t)
passes through a maximum around 10−3 ns and then de-
creases. The α-relaxation regime, represented, in the fre-
quency space, by the bracketed term of equation (4.14),
appears as the plateau followed by an abrupt decrease
visible for every value of τR. We have verified that the
corresponding part of the response function follows the
“time-temperature” superposition scaling characteristic of
the OKE response [31]: once multiplied by τR and plot-
ted on a t/τR scale, the rescaled α-relaxation parts of the
response functions perfectly superpose each other, for all
temperatures (values of τR). The part of ROKE(t) acces-
sible to a TG-experiment begins in the vicinity of 1 ns: at
the highest temperatures, this time window corresponds
to the α-relaxation regime, and such a regime does not
seem to have been recorded in any TG-experiment per-
formed with parallel polarisation of the pumps. At lower
temperatures, the signal amplitude decreases so much that
it cannot be detected.
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Fig. 2. ROKE(t) vs. time on a log-log scale. ROKE(t) is shown for values of the α-relaxation time of the orientational function,
τR, equal to 10−1 ns (—–), 10 ns (−−−), 103 ns (· · · · ·), and 105 ns (− · − · −).

4.3 Time evolution of Rdens−dens(�q, t), Ror−dens(�q, t),
Rdens−or(�q, t) and Ror−or(�q, t)

We now study the ERFs contained in equations (3.19)
related to the electrostrictive and OKE sources. We
start with Rdens−dens(�q, t), which is the inverse Laplace-
Transform of −iPL(�q, ω). According to equation (29a)
of [25], one has

1
ω

[
1+q2c2

i PL(�q, ω)
]〈∣∣δρ0(�q)

∣∣2〉 =

LT
[〈δρ(�q, t)δρ0(�q)∗〉] (ω), (4.15)

where the imaginary part of the l.h.s. of this equation
is the a2 contribution to I

(2)
yy (�q, ω), equation (4.3), and

where, in the long wavelength limit considered here, the
q = 0 limit of 〈∣∣δρ0(�q)

∣∣2〉 can be taken. Using equa-
tion (4.12c), one easily obtains

Rdens−dens(�q, t) =
−1
q2c2

i

d

dt

〈δρ(�q, t)δρ0(�q)∗〉
〈|δρ0|2〉 . (4.16)

This equation has the expected form: Rdens−dens(�q, t),
which is the thermal mean value of the density modulation
at time t created by another density modulation at time
t = 0 is proportional to the time derivative of the corre-
sponding correlation function, with a negative pre-factor.

Equation (4.16) provides an easy way of understand-
ing the time and temperature variation of Rdens−dens(�q, t).
The density-density correlation function describes the
time evolution of a longitudinal phonon with effective fre-
quency νB = ωB/2π, wavevector q and decay constant
Γ . The decay of this phonon is mostly governed by τanh,

which slowly varies with temperature and is proportional
to q−2. This is not true in the region where ωBτL ≈ 1, in
which case the phonon is strongly damped by the struc-
tural relaxation. Thus, in complete similarity with the case
of ROKE(t), at short times (ωBt ≤ 1), Rdens−dens(�q, t)
will increase as 1

ωB
sin(ωBt). At later times, it will decay

as an attenuated sinusoidal function, whose decay time is
close to τanh for most temperatures. The role of τL will be
hardly detectable except for ωBτL ≈ 1. When τL � τanh,
though there exists a long time decay governed by τL, the
latter will not be visible. For t ≈ τL, Rdens−dens(�q, t) has
already so much decayed under the influence of τanh that
this ERF is hardly measurable; a change in its decay rate
cannot be detected.

This discussion agrees with the elementary response
functions shown in Figure 3. They have been computed
with the help of equation (3.18d) through the same tech-
nique as for ROKE(t). We have chosen values for the pa-
rameters entering PL(�q, ω) which could represent approx-
imately a m-toluidine signal for q = 0.6 µm−1. We have
written

ωη̃L(ω)
ρm

= ∆2

[
1 −

(
1

1 + iωτL

)βL
]

+ iγ, (4.17)

with q∆ = 2π GHz, q2γ = 0.2π GHz and βL = 0.7 and
have taken qca = 1.2×2π GHz. The temperature variation
is taken into account by the sole variation of τL, which we
change by factors 102 from 10−2 ns to 104 ns. The pre-
dicted variations are clearly visible and, in particular, the
signal is always limited in time by the anharmonic decay,
except for τL = 1 ns, when the longitudinal relaxation
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Fig. 3. Rdens−dens(�q, t) vs. time on a semi-log scale. Rdens−dens(�q, t) is shown for values of the α-relaxation time of the
longitudinal viscosity, τL, equal to 10−2 ns (—–), 1 ns (−−−), 102 ns (· · · · ·), and 104 ns (− · − · −). Note that, on that scale,
the last two curves cannot be distinguished.

time is responsible for the much stronger damping visible
in the figure.

To study the time evolution and analyse the informa-
tion that can be extracted from Ror−dens(�q, t), it is con-
venient to relate that ERF to Rdens−dens(�q, t). Let us first
remark that, taking into account the definition of r(ω),
equation (3.6b), one can write

−ir(ω)PL(�q, ω) = (−i)
[

iω2
R

D(ω)

] [−iωµ(ω)
ω2

R

PL(�q, ω)
]

≈ − iωµ(ω)
ω2

R

PL(�q, ω). (4.18)

The approximation indicated in equation (4.18) means
that the frequency dependence of D(ω) may be neglected.
Indeed, the term in the middle of that equation corre-
sponds, in the time domain, to the convolution product of
ROKE(t) with the inverse Laplace-Transform of the r.h.s.
of that equation. As the duration of the part of ROKE(t)
that has a non-negligible amplitude is of the order of a few
picoseconds while the signal of the r.h.s. extends over hun-
dreds of nanoseconds, this neglect is perfectly legitimate.
Furthermore, one can write

ωµ(ω)
ω2

R

[−iPL(�q, ω)] =
µ0

ω2
R

[−iPL(�q, ω)]

+ (−i)
[
i
ωµ(ω) − µ0

ω2
R

]
[−iPL(�q, ω)] , (4.19a)

which implies, in the time domain,

Ror−dens(�q, t) =
µ0

ω2
R

Rdens−dens(�q, t)

+
µ̇(t)
ω2

R

⊗ Rdens−dens(�q, t). (4.19b)

The r.h.s. of equation (4.19b) is the sum of
Rdens−dens(�q, t) (up to a µ0/ω2

R factor) and of its
convolution with µ̇(t)/ω2

R. For short relaxation times, it
is easily shown that the second term of equation (4.19b)
largely cancels the first term. For longer relaxation
times, this second term is negligible with respect to
the first one because µ̇(t) is proportional to τ−1

µ , the
inverse of the rotation–translation relaxation time. In
summary, Ror−dens(�q, t) has a shape quite similar to
Rdens−dens(�q, t), except for very short values of τµ. This
is illustrated in Figure 4a where we have computed the
r.h.s. of equation (3.18e) taking for ωµ(ω)

ω2
R

a form similar
to equation (4.17)

ωµ(ω)
ω2

R

= µ0

[
1 −

(
1

1 + iωτµ

)βµ
]

. (4.19c)

We have taken βµ = βL = 0.7 and chosen τµ = 3τL what-
ever the temperature, a constant ratio suggested again by
m-toluidine HD-TG experiments [13]. In order to make
clear that Ror−dens(�q, t) brings very little novel informa-
tion, Figure 4b represents only the second term of the
r.h.s. of equation (4.19b) computed for τL = 10−1 ns,
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(a)

(b)

Fig. 4. (a) Ror−dens(�q, t) vs. time on a semi-log scale.
Ror−dens(�q, t) is computed for values of the α-relaxation
time of the rotation-translation coupling function, τµ, equal
to 3τL with the same values of τL as in Figure 3.
Note that, on that scale, the curves corresponding to
the two largest values of τL cannot be distinguished.
(b) Ror−dens(�q, t) − µ0

ω2
R

Rdens−dens(�q, t) vs. time on a semi-

log scale for the same ratio τµτL as in Figure 4a and for
τL = 10−1 ns (—–), 1 ns (−−−), and 10 ns (· · · · ·). The
difference decreases with increasing values of τL and also de-
creases as Ror−dens(�q, t) for increasing time.

1 ns and 10 ns. This second term is important only for
τL = 10−1 ns and it is completely negligible for τL ≥ 10 ns.

The study of the two other elementary response func-
tions, Rdens−or(�q, t) and Ror−or(�q, t), goes along similar
lines. Firstly, Rdens−or(�q, t) is identical to Ror−dens(�q, t),
equation (3.18f). Also, the time evolution Ror−or(�q, t)
is easily derived from that of Rdens−dens(�q, t) by apply-
ing twice to Ror−or(�q, t) the technique that led to equa-

tion (4.19b):

Ror−or(�q, t) ≈
(

µ0

ω2
R

)2

Rdens−dens(�q, t)

+ 2
µ0

ω2
R

µ̇(t)
ω2

R

⊗ Rdens−dens(�q, t)

+
µ̇(t)
ω2

R

⊗ µ̇(t)
ω2

R

⊗ Rdens−dens(�q, t). (4.20)

This equation and the discussion performed below equa-
tion (4.19b) shows that also Ror−or(�q, t) has the same time
extent as Rdens−dens(�q, t) and it will differ from it only at
short times and for small values of τµ.

The study performed in Section 4.2 and here already
allows us to understand that the five ERFs discussed up to
now do not bring much information that could not be de-
rived from other optical techniques. ROKE(t) can be mea-
sured in an OKE experiment or could be obtained by a
Laplace-Transform of the central peak that appears in a
Brillouin-scattering experiment. The four other elemen-
tary response functions are related to each other through
appropriate convolution products of Rdens−dens(�q, t) with
the time derivative of the rotation-translation coupling
function, µ(t), and they do not differ much from each
other. Furthermore, Rdens−dens(�q, t) is proportional to the
time derivative of the density-density correlation function,
which is an essential ingredient of the polarised Brillouin
spectrum. Thus, none of these four response functions
can contain much more information than this spectrum.
We shall return to this problem in Section 4.5 and show
that, in fact, the contribution of those five ERFs to any
Rii,jj(�q, t) is just the inverse Laplace-Transform of some
light scattering spectrum.

4.4 Time evolution of Rdens−ther(�q, t) and Ror−ther(�q, t)

These last two response functions differ from the pre-
ceding ones because they cannot be expressed solely
through terms that enter into the expression of a po-
larised Brillouin-scattering experiment. This explains why,
in particular, Rdens−ther(�q, t), the ISTS response func-
tion, brings information on the α-relaxation time of the
longitudinal viscosity for values not accessible with the
previous technique. The time and temperature evolution
of Rdens−ther(�q, t) has been discussed in detail in [6] and
partly summarised in the Introduction.

In principle, we should thus simply discuss the new
information contained in Ror−ther(�q, t). Yet, in order to
be complete, we perform the study of those two response
functions in a language largely similar to the one used in
the two previous sections.

Neglecting the frequency dependence of β(ω) and
CV (ω) (see end of Sect. 4.1), one easily obtains

Rdens−ther(�q, t) = −βth

τh
exp (−t/τh) ⊗ Rdens−dens(�q, t).

(4.21a)
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This expression, and its alternate form,

Rdens−ther(�q, ω) = i
βth

1 + iωτh
PL(�q, ω), (4.21b)

are convenient to explain the time and temperature evo-
lution of Rdens−dens(�q, t).

First, the short time behaviour of equation (4.21a) goes
as βth cos ωBt−1

ω2
B

, up to terms in (t/τh)2 or (Γt)2, as can be
directly checked from the convolution product of an expo-
nential with exp(−Γt) sin ωBt

ωB
(a reasonable approximation

for Rdens−dens(�q, t) at short times), and this expression is
valid as long as ωBt ≤ 1. Rdens−dens(�q, t) has thus a sign
opposite to that of βth, as could have been anticipated.
Indeed, βth is related to αth, the thermodynamic limit of
the thermal expansion coefficient at constant pressure by

βth = c2
i α

th. (4.21c)

For positive αth, an increase of temperature results in a
decrease of the density while electrostriction corresponds
to its increase.

Equation (4.21b) explains the long time behaviour of
Rdens−ther(�q, t). Let us first generalise equation (4.17) to

ωη̃L(ω)
ρm

= ∆2 [1 − f(ωτL)] , (4.22)

where f(ωτL = 0) = 1, while limω→∞ [f(ωτL)] = 0. For
frequencies such that ωτh � ωτL � 1, PL(�q, ω) reduces to

PL(�q, ω) ≈ − 1
(ω∞

B )2

[
1 +

(
q∆

ω∞
B

)2

f(ωτL)

]
, (4.23a)

with
(ω∞

B )2 = q2
[
c2
a + ∆2

]
. (4.23b)

If one neglects the second term of equation (4.23a), (very
long time behaviour), Rdens−ther(�q, ω), equation (4.21b),
only depends on ω through its first factor which represents
the thermal decay of the grating. As long as one neglects
the frequency dependence of β(ω) and CV (ω), the very
long time part of Rdens−ther(�q, t) does not carry any in-
formation on a structural relaxation process.

The second term of the r.h.s. of equation (4.23a) ex-
plains the appearance of the longitudinal relaxation time
in Rdens−ther(�q, t) at intermediate times (ωτL ≈ 1). Its
introduction into equation (4.21b) leads to direct infor-
mation on the structural relaxation time for t ≈ τL < τh.
Indeed, one can verify that if, for instance, [1 − f(ωτL)]
has the form of a Cole-Davidson function (cf. Eq. (4.19c)),
the f(ωτL) part of equation (4.23a) can be approximately
represented by a stretched exponential with a positive pre-
factor, in agreement with the experimental results. The
α-relaxation of the density-density correlation function is
directly visible in that part of Rdens−ther(�q, t). The three
characteristics of the time evolution of Rdens−ther(�q, t)
which make this ERF fundamental in the study of super-
cooled liquids are thus easily explained. Let us neverthe-
less remark that our discussion of this long time behaviour

has been based on the approximation ωτh(q, ω) � 1.
This yielded a definition of τh, equation (3.13), in which
−iCV (ω) is approximated by Cth

V . Such an approximation
is clearly inconsistent with the frequency regime (ωτh ≈ 1)
just discussed. We shall show, in Section 6.3, that a more
consistent treatment of this regime simply results in re-
defining τh through Cth

P , the thermodynamic limit of the
specific heat at constant pressure, instead of Cth

V , in agree-
ment with [27,32].

Let us finally discuss the new information introduced
by Ror−ther(�q, t). From a formal point of view, one finds,
in analogy with equation (4.21a),

Ror−ther(�q, t) = −βth

τh
exp (−t/τh) ⊗ Ror−dens(�q, t).

(4.24a)
Yet, this result is not particularly useful. It is more in-
teresting to use the same technique as for the study of
Ror−dens(�q, t), cf. equation (4.19b), to obtain

Ror−ther(�q, t) =
µ0

ω2
R

Rdens−ther(�q, t)

+
µ̇(t)
ω2

R

⊗ Rdens−ther(�q, t). (4.24b)

An analytical discussion of equation (4.24b) shows that,
as long as ωBτµ 
 1, its two terms nearly cancel, as
was already the case for Ror−dens(�q, t). Conversely, for
ωBτµ � 1, the analytic forms of Ror−dens(�q, t) and
Ror−ther(�q, t) are quite different because Rdens−dens(�q, t)
tends rapidly to zero for long times while Rdens−ther(�q, t)
remains approximately constant and finite for τanh <
t < τh. Then, approximating Rdens−dens(�q, t) by that con-
stant, the convolution product in equation (4.24b) yields

Ror−ther(�q, t) ≈ µ(t)
ω2

R

Rdens−ther(�q, t). (4.24c)

This equation shows that, for τanh < t < τh and
ωBτµ � 1, which are the conditions to extract information
on the α-relaxation time of η̃L(t) from Rdens−ther(�q, t), the
α-relaxation time of µ(t) can similarly be extracted from
Ror−ther(�q, t).

Our analysis of the time evolution of these two ERFs
agrees with the functions shown in Figures 5a and 5b.
They have been calculated with the same fixed and
varying parameters as for Figures 3 and 4a, choosing
τh = 33 µs, a value of τh typical of m-toluidine for
q = 0.6 µm−1. Nevertheless, in order to ease the compari-
son with the familiar results presented, e.g. in [6], we have
plotted the opposite of Rdens−ther(�q, t) and Ror−ther(�q, t).
Figure 5a represents Rdens−ther(�q, t): the three features
discussed above are clearly visible and the increase of the
function in the 10−104 ns window for τL = 102 ns and
τL = 104 ns has already been discussed in the Introduc-
tion. Figure 5b represents Ror−ther(�q, t), computed with
µ0 = ω2

R. It shows the weakness of the Ror−ther(�q, t) re-
sponse function for τµ = 3 × 10−1 ns and also that this
ERF decreases as µ(t) for larger values of τµ, the decrease
becoming slightly more complex than predicted by equa-
tion (4.24c) when τµ ≈ τh.
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(a)

(b)

Fig. 5. (a) Rdens−ther(�q, t) vs. time on a semi-log scale.
Rdens−ther(�q, t) is computed for a value of the heat-diffusion
time, τh, equal to 33 µs and values of the α-relaxation time,
τL, of the longitudinal viscosity, equal to 10−2 ns (—–),
1 ns (− − −), 102 ns (· · · · ·), 104 ns (− · − · −),
and 106 ns (·····). Note the strong damping of the acous-
tic phonon for τL = 1 ns, i.e. when ωBτL ≈ 1.
(b) Ror−ther(�q, t) vs. time on a semi-log scale. Ror−ther(�q, t)
is computed for the same values of τh and τL as in (a), and
for the same ratio τµτL = 3 as in Figure 4. Note the difference
between (a) and (b) at long time.

4.5 Comparison between the HD-TG response
functions and polarised light scattering results

Up to now, we have studied separately the seven ERFs
but we have not made use of the general expression, equa-
tions (3.19). A more global and physically meaningful
analysis of Rii,jj(�q, t) can be performed when using simul-
taneously some results derived in Sections 4.1–4.3 and the
relation, equation (A.16), between K, F , a and b derived

in Appendix A. This equation reads

ρm

Λ′
F

2b
=

K

a
= S, (4.25)

where S is a positive parameter. Equations (3.19) can thus
be transformed into

Rii,jj(�q, t) = RISBS
ii,jj (�q, t) + RISTS

ii,jj (�q, t), (4.26a)

with

RISBS
ii,jj (�q, t) = S

[(ρm

λ

) Λ′

ρm
b2 1 + 3εexεp

3
ROKE(t)

+q2

(
a2 Rdens−dens(�q, t) +

Λ′

ρm
ab

(
3εp − 1

3
Ror−dens(�q, t)

+
3εex − 1

3
Rdens−or(�q, t)

))
+ q2

(
Λ′b
ρm

)2

×3εp − 1
3

3εex − 1
3

Ror−or(�q, t)
]

. (4.26b)

We call RISBS
ii,jj (�q, t) the “generalised ISBS” response func-

tion because, for isotropic molecules (b equal to zero),
this function is simply proportional to Rdens−dens(�q, t),
which is the ISBS response function originally introduced
in [5,6]. Similarly

RISTS
ii,jj (�q, t) =

ρm

λ
H

×
[
aRdens−ther(�q, t) +

Λ′b
ρm

3εp − 1
3

Ror−ther(�q, t)
]

,

(4.26c)

and we call RISTS
ii,jj (�q, t) the “generalised ISTS” response

function because, for b and/or r(ω) equal to zero, this
function is simply proportional to Rdens−ther(�q, t), which
is the ISTS response function first introduced in the same
two papers.

Let us analyse now RISBS
ii,jj (�q, t). First, because of the

equality of Ror−dens(�q, t) and Rdens−or(�q, t), RISBS
ii,jj (�q, t) is

symmetrical in the interchange of i and j (i.e. of εp and
εex). There exist only three distinct response functions
of this type: RISBS

xx,xx(�q, t), RISBS
xx,yy(�q, t) = RISBS

yy,xx(�q, t), and
RISBS

yy,yy(�q, t). It is the RISTS
ii,jj (�q, t) contribution to Rii,jj(�q, t)

which breaks the symmetry between i and j in the total
response function.

Second, we can relate directly RISBS
yy,yy(�q, t) to Iyy(�q, t)

by making use of equations (4.13b, 4.16) and of similar
relations that we shall now prove. To start with, equa-
tion (32) of [25] can be expressed, in the notations of the
present paper as

LT
[〈Qyy(�q, t)δρ0(�q)∗〉] (ω) =

2
3

Λ′

ρm
q2c2

i

r(ω)
ω

PL(�q, ω)〈∣∣δρ0
∣∣2〉, (4.27)
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so that, as symmetry reasons impose that
〈
Q0

yy(�q)δρ
0(�q)∗

〉
is of order q2, one obtains

Ror−dens(�q, t) =
−3
2

ρm

Λ′
1

q2c2
i

d

dt

〈Qyy(�q, t)δρ0(�q)∗〉
〈|δρ0|2〉 .

(4.28)
Up to some algebraic factors, equation (4.28) is, as equa-
tion (4.16), a rather trivial result. Ror−dens(�q, t) being, by
definition, an orientational response function to a density
modulation at time t = 0, it must be proportional to the
time derivative of the correlation function of some diag-
onal component of the molecular orientation tensor with
the density. Furthermore, owing to the time-reversal sym-
metry of that correlation function, one can also write

Rdens−or(�q, t) =
−3
2

ρm

Λ′
1

q2c2
i

d

dt

〈
δρ(�q, t)Q0

yy(�q)
∗〉〈

|δρ0|2
〉 . (4.29)

Finally, equation (33) of [25] can be written in the form

LT
[〈Qyy(�q, t)Q0

yy(�q)
∗〉] (ω) =

[
1
ω

(
1 − ω2

R

D(ω)

)

+
Λ′

3ρm
q2ω2

R

r2(ω)
ω

PL(�q, ω)
]
〈∣∣Q0

yy

∣∣2〉. (4.30)

The second term in the r.h.s. corresponds to phonons
launched and detected, in a Brillouin-scattering experi-
ment, by the orientational fluctuations while the first term
is the corresponding central peak. With the help of the
expression of the Laplace-Transform of the derivative of
a function, equation (4.11b), and of equation (4.5), the
preceding equation can be transformed into

ROKE(t) +
Λ′

ρm

q2

3
Ror−or(�q, t) =

− 3
4

ρm

Λ′
1
c2
i

d

dt

〈
Qyy(�q, t)Q0

yy(�q)∗
〉

〈
|δρ0|2

〉 . (4.31)

As expected, Ror−or(�q, t) is proportional to one part of
the time derivative of the auto-correlation function of the
orientational variable, while ROKE(t) is another part of it.

We can now group together the results relating the
five ERFs entering RISBS

yy,yy(�q, t) with the time derivative of
the corresponding correlation functions. An easy calcula-
tion involving equations (4.16, 4.28, 4.29, 4.31) and the
definition of δ ¯̄ε, equation (3.2), yields

RISBS
yy,yy(�q, t) =

−S

c2
i

d

dt

〈
δεyy(�q, t)δε0

yy(�q)∗
〉

〈
|δρ0|2

〉 . (4.32)

Noting that Iyy(�q, ω) is given by

Iyy(�q, ω) = Im
(
LT

[〈
δεyy(�q, t)δε0

yy(�q)∗
〉]

(ω)
)
, (4.33)

one sees that RISBS
yy,yy(�q, t) contains the same information

as Iyy(�q, ω).

Equation (4.33) can be extended to the other values
of i and j, as can be shown by using other results of [24,25]
(see also [27]). In its general form, the preceding equation
reads

RISBS
ii,jj (�q, t) =

−S

c2
i

d

dt

〈
δεii(�q, t)δε0

jj(�q)
∗〉〈

|δρ0|2
〉 . (4.34)

This equation generalises a result that was implicit
in [5,6]. When the anisotropy of the molecules can be ne-
glected (b = 0), RISBS

ii,jj (�q, t) reduces to the density-density
response function which, by nature, is related to the
density-density correlation function by the Fluctuation-
Dissipation theorem. As, in previous works on supercooled
liquids, the same b = 0 approximation was made for
the dielectric fluctuations,

〈
δεii(�q, t)δε0

jj(�q)
∗〉 was propor-

tional to
〈
δρ(�q, t)δρ0(�q)∗

〉
and did not depend on the

values of the indices i or j. In this simple case, equa-
tion (4.34) is a trivial statement but it already suggests
that the ISBS response function contains the same infor-
mation as the corresponding Brillouin spectrum. Its gen-
eral form, equation (4.34), generalises this statement to
the case of anisotropic molecules. Indeed, in that case,
there exist three independent Brillouin spectra that in-
volve longitudinal phonons. They are labelled respectively
IV V (�q, ω) ≡ Iyy(�q, ω), IHH(�q, ω) (see, e.g. [24]) which is a
weighted sum of Ixx(�q, ω) and Iyy(�q, ω), and a third spec-
trum, proportional to

Im
(
LT

[〈
δεxx(�q, t)δε0

yy(�q)∗
〉]

(ω)
)
. (4.35)

The latter can be extracted from spectra measured in
a geometry intermediate between the VV and the HH
ones [33]. Equation (4.34) indicates that the informa-
tion contained in the three distinct “generalised ISBS”
response functions is identical to that present in these
three Brillouin spectra: they are related by the same
Fluctuation-Dissipation theorem.

The “generalised ISTS” response function con-
tains unique information on η̃L(t) and µ(t) in the
10−104 ns range but it does not lead to as rich an
analysis as for RISBS

ii,jj (�q, t). With the help of equa-
tions (4.16, 4.21a, 4.24a, 4.29) and of results in [25],
RISTS

ii,jj (�q, t) can be transformed into

RISTS
ii,jj (�q, t) =

ρm

λ

βth

q2c2
i

H
1
τh

× exp
(
−t/τh

)
⊗ d

dt

〈
δεii(�q, t)δρ0(�q)∗〉〈

|δρ0|2
〉 . (4.36)

RISTS
ii,jj (�q, t) is the convolution product of exp (−t/τh),

characteristic of the irreversible heat diffusion process,
with the derivative of a correlation function describing
part of the liquid dynamics. This convolution product
breaks the symmetry between i and j, as the latter does
not appears in the r.h.s. of equation (4.36). It is also
the reason for obtaining from this “generalised ISTS” re-
sponse function, information not accessible by Brillouin-
scattering.
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To conclude this section, let us point out that heat
diffusion and temperature modulation should not be con-
fused. One can generalise [27] the model for dielectric
fluctuations by including also temperature fluctuations
(see [34] where such an addition is necessary to explain
HD-TG experiments in supercooled water):

δ ¯̄ε(�r, t) = aδρ(�r, t) ¯̄I + b ¯̄Q(�r, t) + cδT (�r, t) ¯̄I. (4.37)

This leads to a more involved form of Rii,jj(�q, t), con-
taining also terms related to the temperature modula-
tion. However, Rii,jj(�q, t) will still contain a RISBS

ii,jj (�q, t)
part, that will verify equation (4.34) and hence fulfil the
Fluctuation-Dissipation theorem, and a RISTS

ii,jj (�q, t) part.
Similarly to equation (4.36), the latter will again charac-
terise the irreversible heat diffusion process, and will not
satisfy that theorem.

5 Determination of the elementary response
functions

We have shown in the preceding section that RISBS
ii,jj (�q, t)

contains the same information as some Brillouin spectra so
that these response functions could, in principle, be com-
puted from such spectra, then subtracted from Rii,jj(�q, t)
to obtain the two distinct RISTS

ii,jj (�q, t). In practice, such a
method is inapplicable because of the numerical uncertain-
ties introduced by performing a Laplace-Transform on an
experimental spectrum as well as by the limited frequency
range spanned by a typical Brillouin spectrum. It would
thus be interesting to obtain directly the six distinct ERFs
from the polarised HD-TG experiments. This is unfortu-
nately impossible because there are only four different9
Rii,jj(�q, t) available to determine those six unknown func-
tions. One can simplify the problem slightly by grouping
together in equation (3.19c) the two ERFs Rdens−ther(�q, t)
and Rdens−dens(�q, t) that are independent of the value of
εp and εex. Introducing

Rdens−iso(�q, t) = Rdens−ther(�q, t)

+ a
λq2

ρm

S

H
Rdens−dens(�q, t) (5.1)

(where we have made use, as will be done in the remain-
ing of this section, of equation (4.25) to eliminate K),
we are still left with five unknown functions in equa-
tion (3.19c), Rdens−iso(�q, t) replacing Rdens−ther(�q, t) and
Rdens−dens(�q, t) being eliminated, while we can only per-
form four independent measurements. One obtains, for

9 The measurement of Rxy,xy(�q, t) gives no additional infor-
mation (see Appendix C) as it is a weighted sum of ROKE(t)
and of another elementary response function related to a trans-
verse phonon and not to a longitudinal one.

instance,

2b2 Λ′

ρm
SROKE(t) = 2 (Ryy,yy(�q, t) − Ryy,xx(�q, t))

+ (Rxx,yy(�q, t) − Rxx,xx(�q, t)) − 6ab
Λ′

ρm
q2SRor−dens(�q, t),

(5.2)

a formula which is at odds with equation (23e) of [14] for
a reason we shall discuss in Section 6. Nevertheless, there
are two routes that may be used to obtain individually the
ERFs. One is applicable when the relative weight of the
different sources (S and H), or detection mechanisms (a
and b) are sufficiently different to neglect one compared
to the other. The other route takes advantage of the short
duration of ROKE(t) with respect to the other response
functions. Let us discuss in turn these two possibilities.

5.1 The order of magnitude aspect — The isotropic
and anisotropic spectra

For a given wavevector, the relative intensities of the dif-
ferent terms entering into equations (3.19b, 3.19c) depend
on two ratios, H

S
ρmβth

λa and bΛ′µ0

aρmω2
R

. The first describes the
relative importance of the heat absorption with respect
to the two other sources and may be varied by changing
the frequency of the pumps. The second ratio depends
basically on b/a, the ratio between the two scattering effi-
ciencies, and on µ0/ω2

R, a molecular quantity totally fixed
by the shape of the molecule and by the inter-molecular
interactions. Four different approximations may be con-
sidered.

– If H
S

ρmβth

λa 
 1, the heat absorption process is negli-
gible: one can simply measure the different elements
of RISBS

ii,jj (�q, t) and the HD-TG response functions are
just Laplace-Transforms of Brillouin-scattering exper-
iments. Yet, we are left here with only three inde-
pendent measurements (Rxx,yy(�q, t) = Ryy,xx(�q, t)) so
that the independent determination of the four elemen-
tary response functions is still not possible in principle.

– If H
S

ρmβth

λa ≈ 1 but bΛ′µ0

aρmω2
R


 1, the molecular aspect
of the liquid does not show up: only Rdens−iso(�q, t) has
a non-negligible value and the four possible Rii,jj(�q, t)
response functions are identical. This seems to be the
case for o-terphenyl studied in [11], where the authors
have been able to disentangle the ISBS response func-
tion from the ISTS one by a careful analysis of their
data.

– If H
S

ρmβth

λa � 1 while bΛ′µ0

aρmω2
R


 1, the situa-
tion is even simpler. The heat absorption domi-
nates, there is neither rotation-translation coupling nor
“generalised ISBS” contribution. One only measures
Rdens−ther(�q, t), whatever the signal recorded.

– Finally, if H
S

ρmβth

λa � 1 but if the second ratio is large
enough, the “generalised ISBS” contribution is still
negligible but polarisation effects of the pumps can
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be obtained on RISTS
ii,jj (�q, t): one detects linear com-

binations of the two elementary response functions,
Rdens−ther(�q, t) and Ror−ther(�q, t). This seems to be
the case of salol [14] and of m-toluidine [12,13]. In such
cases, one can access to two terms proportional, respec-
tively, to Rdens−ther(�q, t) and to Ror−ther(�q, t) through
the two combinations, Riso(�q, t) and Raniso(�q, t), de-
fined as

Riso(�q, t) =
1
3

[2Ryy,jj(�q, t) + Rxx,jj(�q, t)]

=
aρmH

λ
Rdens−ther(�q, t), (5.3)

Raniso(�q, t) =
1
2

[Ryy,jj(�q, t) − Rxx,jj(�q, t)]

=
bΛ′H

λ
Ror−ther(�q, t). (5.4)

The ratio of their amplitude gives directly the value
of bΛ′µ0

aρmω2
R

. These results, corrected of minor typos, are
those that have been already presented in [12,13].

5.2 The time separation method

The other possible technique to access the elementary re-
sponse functions is to make use of the results of Figure 2
or of experimental results on OKE such as [31,35] to ar-
gue that ROKE(t) becomes negligible at the time when the
five other signals of equations (3.19c) become visible. For
such times and with such a neglect, one easily derives the
following formulae

(
b

Λ′

ρm

)2

q2SRor−or(�q, t)=
1
4

[(Ryy,yy(�q, t)−Ryy,xx(�q, t))

−(Rxx,yy(�q, t)−Rxx,xx(�q, t))] ,
(5.5)

ab
Λ′

ρm
q2SRdens−or(�q, t)=

1
6
[2 (Ryy,yy(�q, t)−Ryy,xx(�q, t))

+(Rxx,yy(�q, t)−Rxx,xx(�q, t))] ,
(5.6)

bΛ′

λ
HRor−ther(�q, t)=

1
2

[Ryy,xx(�q, t)−Rxx,yy(�q, t)] ,

(5.7)
aρm

λ
HRdens−iso(�q, t)=

1
9

[4Ryy,yy(�q, t) + 2Ryy,xx(�q, t)

+2Rxx,yy(�q, t)+Rxx,xx(�q, t)] .
(5.8)

Three of the five elementary response functions can thus
be obtained separately and equation (5.4) is just a special
case of equation (5.7) valid when the response functions
do not depend on the index j. The same is true for equa-
tions (4.3, 4.8) but it is now Rdens−iso(�q, t), instead of its
first term, Rdens−ther(�q, t), that is obtained because S is
no longer negligible.

6 Relationship with previous work
and practical discussion

6.1 Introduction

As recalled in Section 1, the study of supercooled liquids
by TG-techniques has a long history. Independently of
the seminal work of Allain et al. [2], Yan, Cheng, and
Nelson [5] proposed in 1988 a set of equations describ-
ing the instantaneous interaction of a supercooled liquid
with the two pumps and its later temporal evolution. The
next important contribution was a more precise analysis
of the solution of these equations by Yang and Nelson [6].
Finally the existence of polarisation effects in a HD-TG
experiment on salol led Glorieux et al. to extend some-
what the preceding set of equations [14]. In Section 6.2,
we shall summarise and discuss these previous approaches
in the language of the present paper.

The study of Rdens−ther(�q, t), the ISTS response func-
tion, as identified in [8,11] in the time domain, was per-
formed following a formula proposed in [8]. Yet, its ap-
plication revealed an anomaly of the heat diffusion time
at low temperature for which a possible explanation has
recently been proposed [29] in the language of out-of-
equilibrium thermodynamics. In Section 6.3, we reanal-
yse this problem with the help of the exact expression of
Rdens−ther(�q, t) given in equation (3.18b). Arguing that,
except for a very small temperature domain, the anomaly
arises from the terms we dropped, or the approximation
we made in Section 4, we shall reintroduce the missing
terms in turn and show that their neglect is presumably
at the origin of this apparent anomaly.

6.2 Comparison with other work

All the papers analysing TG-experiments performed on
supercooled liquids published before 2002 ignored their
molecular nature: there was no variable equivalent to ¯̄Q,
and thus no equation equivalent to equation (2.28). Allain
et al. [2], who ignored electrostriction, analysed in essence
their experiments with the help of two equations which
read, with the present notation

¯̄σ =
[−c2

i δρ + ηL ⊗ div�v − ρmβ ⊗ δT
] ¯̄I, (6.1a)

CV ⊗ Ṫ − Tmβ ⊗ ρ̇ − λ∆T = 2HUg, (6.1b)

but they only looked for the long time behaviour, t ≈ τh, of
their solution. In fact, they obtained those equations in the
frequency domain, considering, on the one hand, their in-
finite frequency limit and introducing, on the other hand,
the relaxation processes through the coupling of the den-
sity and temperature modulations to a very large number
of additional variables, ξi, supposed to exhibit a relax-
ational dynamics. Indeed, using forms equivalent to equa-
tion (4.22), they first expressed equations (4.6a, 4.6b) in
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the form

CV (ω) = i
[
Cth

V − δCV [1 − fC(ωτC)]
]

≡ i [C∞
V + δCV fC(ωτC)] , (6.2a)

β(ω) = i
[
βth − δβ [1 − fβ(ωτβ)]

] ≡ i [β∞ + δβfβ(ωτβ)] ,
(6.2b)

fC(ωτC) and fβ(ωτβ) having the same low and high fre-
quency limits as f(ωτL) in equation (4.22). The set of
equations used in [2] was10

¯̄σ = −
[(

c2
i + ∆2

)
δρ + ρmβ∞δT + ρm

∑
i

AiXiξi

]
¯̄I,

(6.3a)

−Tm (β∞ρ̇ + σρδρ) + C∞
V Ṫ + σT δT − λ∆δT

−Tm

∑
i

AiYiτ
−1
i ξi = 2HUg, (6.3b)

τ−1
i (Xiδρ − YiδT + ξi) + ξ̇i = 0, (6.3c)

with

σT = Tm

∑
i

AiY
2
i τ−1

i ; σρ =
∑

i

AiXiYiτ
−1
i , (6.4a)

the ratio between the different relaxation times, τi,
being independent of temperature. Taking the Laplace-
Transforms of equations (6.3), the elimination of the
set of variables ξi led, when transformed back in the
time domain to equations (6.1a, 6.1b) while, in particular,

δCV fC(ωτC) = Tm

∑
i

AiY
2
i

1 + iωτi
, (6.4b)

δβfβ(ωτβ) =
∑

i

AiXiYi

1 + iωτi
. (6.4c)

Conversely, in the later works that ignored ¯̄Q, the
experiments were described with the help of equations
that can be expressed as

¯̄σ =
[−c2

i δρ + η̃L ⊗ div�v − βthρmδT + 2KUg
] ¯̄I, (6.5a)

Cth
V Ṫ − Tmβthρ̇ − λ∆T = 2HUg. (6.5b)

These equations ignore retardation effects except for the
longitudinal viscosity11. The existence of the two distinct
response functions, the ISBS, corresponding to the elec-
trostrictive effect, and the ISTS response due to the heat
absorption, were already recognised in [5]. Nevertheless,
up to 1995, the analysis of the recorded signal remained
10 Equations (6.3) are here corrected from some minor errors
appearing in [2] which do not affect their general philosophy.
11 Retardation on the tension coefficient and on the specific
heat was, in fact, formally introduced in [5] but it was not taken
into account when studying the solutions of these equations.

limited to its oscillatory part, which was described as an
ISBS response function:

Rdens−dens(�q, t) =
exp (−Γt) sin ωBt

ωB
. (6.6)

At each temperature, information on η̃L(ω) was obtained
by varying the scattering angle and extracting η̃L(ωB)
from the fit parameters Γ and ωB.

Yang and Nelson [6,8] made an important break
through by proposing an analytical expression for the
ISTS response function that was able, inter alia, to ex-
plain the long time behaviour of the signal

Rdens−ther(�q, t) ≈ A (exp (−t/τh−fit)−exp (−Γt) cosωBt)

+ B
(
exp (−t/τh−fit) − exp

(
− (t/τL)β

))
, (6.7)

Γ and ωB being parameters common to equa-
tions (6.6, 6.7). This expression was obtained as an “ad
hoc” generalisation [8] of the exact ISTS solution of equa-
tions (6.5a, 6.5b) when η̃L(t) is a Debye-relaxation func-
tion. In that case, β = 1 while τh−fit, τL, Γ and ωB are
analytical functions of the parameters entering into these
two equations12. The generalisation to β �= 1 was per-
formed to link the long time behaviour of Rdens−ther(�q, t)
to the structural relaxation of the liquid, the seven param-
eters of equation (6.7) becoming fit parameters. In this last
case, their physical interpretation is not always obvious,
as we shall see in Section 6.3 when discussing the relation
between τh−fit and τh.

The difference between response functions measured
with different polarisations in salol [14,15] led the authors
of these two papers to introduce a rotation-translation
coupling. This was obtained by simply enlarging the set
of equations (6.5a, 6.5b), adding a third equation partly
similar to equation (2.28). This equation reads [14], in an
unspecified Markov approximation

Ṡflow +
Sflow

τµ
− γτxx = 0. (6.8)

It couples an orientational variable, called Sflow(t) and
taken to be scalar, to the divergence of the molecular mean
velocity, i.e. to the xx component of the strain rate ten-
sor ¯̄τ in the HD-TG geometry of Figure 1. Equation (6.8)
misses, in particular, a torque source (see Eq. (2.28)). Also,
a Ṡflow(t) (or Sflow(t)) counterpart of the γτxx term of
equation (6.8) was not added to equation (6.5a). The re-
sponse functions of [14] that should compare to our equa-
tions (3.17) are thus incomplete. In particular, they do
not depend on the polarisation of the pumps. Also, in the
absence of a torque source, the ROKE(t) term, explicitly
mentioned in [14] as a part of their response functions, has
an unclear origin.

12 Equation (6.7) was already proposed in [36] but with no
justification or analysis of its time dependence.



190 The European Physical Journal B

6.3 The low temperature heat-diffusion time problem

With the exception of [13], all the TG-experiments have
been analysed so far by directly fitting Rdens−ther(�q, t)
and Rdens−dens(�q, t) to, respectively, equations (6.6, 6.7).
In the original spirit of [6], equation (6.7) was only valid
for τanh < τL < τh but, already in [8], this formula was
used to fit response functions even for temperatures at
which τL ≥ τh. Performing such fits, it has been found
that:

– as long as τL 
 τh, the fit parameter τh−fit is, as
anticipated, very little temperature dependent (for in-
stance 1

τh−fit

dτh−fit

dT
∼= 2 × 10−4 K−1 in [11]), while,

at each temperature,
(
τh−fitq

2
)−1 is independent of q,

in agreement with equation (3.13) when the frequency
dependence of CV (ω) can be neglected;

– when lowering the temperature beyond that limit,(
τh−fitq

2
)−1 has a dip [11] of the order of 30% when

τL is in the vicinity of τh−fit, i.e. in a temperature
interval of a few degrees. Conversely [8,11], at lower
temperature, one observes a steady increase of the
same quantity above its high temperature value, this
increase being of the order of 30% in the limited range
of temperature (10−20 K) where the measurements
can be considered as reliable. Those two opposite ef-
fects when τL ≈ τh and τL � τh had been, in fact,
already noticed in [2] where the authors also fit the
long time behaviour of Rdens−ther(�q, t) in the time do-
main.

The origin of the dip is, very likely, a fitting artefact:
when τL ≈ τh−fit, this parameters has not its antici-
pated physical meaning. This is easily shown by fitting
with equation (6.7) different response functions computed
with the same fixed parameters as for Figure 5a (in par-
ticular τh = 3.3× 104 ns) and for various values of τL. We
varied τL by factors 10 from τL = 1 ns to τL = 106 ns
and, in order to study in detail the region τL ≈ τh, we
also used the values τL = n×104 ns, where n is an integer
ranging from 1 to 10. All the fits were quite satisfactory in
the sense that the difference signals (fit function minus the
input function) were nearly equal to zero, as exemplified
in Figure 6a, drawn for the worse case, τL = 4 × 104 ns.
Nevertheless, as shown in Figure 6b, the values of τ−1

h−fit

exhibit, in the vicinity of τL = τh, a dip quite similar to
that found in [6] while they are equal to τh when τL 
 τh

(high temperature case).
Yet, τh−fit returns to its high temperature value for

larger values of τL. The reported increase must thus orig-
inates from physical effects we neglected in Section 4, i.e.
either the frequency dependence of CV (ω) and β(ω), or
the neglect of the last term of equation (E.5) which cor-
responds to the change, in the phonon propagator, from
the high frequency adiabatic propagation to the very low
frequency isothermal one. A complete discussion of those
effects is out of place in the present paper and we shall
only sketch its main aspects.

The frequency dependence of CV (ω) and β(ω)
was already introduced under a simple form in equa-

(a)

(b)

Fig. 6. (a) Fit of Rdens−ther(�q, t) (—) for the same pa-
rameters as in Figure 5a and τL = 4 ns, by the ap-
proximate formula (Eq. (6.7)). Though this value cor-
responds to the worse reliability factor of all the fits
performed, see (b), the fit function and Rdens−ther(�q, t) can-
not be distinguished on that scale. The difference between
the fit function and Rdens−ther(�q, t) is represented as (· · · · ·).
(b) Values of τ−1

h−fit vs. τL obtained by fitting Rdens−ther(�q, t)
by equation (6.7) when the latter has been computed with
τ−1

h = 3 × 104 ns and the values of τL given in abscissa. Note
the strong apparent dip of τ−1

h−fit when τL ≈ τh.

tions (6.2a, 6.2b) and, for simplicity, we shall assume that
τC = τβ = τL.

Let us start with the role of CV (ω), which is, possibly,
the most important effect. Its influence on Rdens−ther(�q, t)
for t ≈ τh may be obtained by performing an analysis of
this ERF similar to the one performed in Section 4.4 but
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which includes the role of δCV (ω)

Rdens−ther(�q, ω) ≈
−i

q2 [c2
i + ∆2 [1 − f(ωτL)]]

βth

1 + ωCV (ω)(λq2)−1 . (6.9)

For both the τL 
 τh and the τL � τh regimes, the
phonon propagator does not influence the frequency de-
pendence of Rdens−ther(�q, ω) when ωτh ≈ 1. In this fre-
quency domain, expressing CV (ω) through the two forms
indicated in equation (6.2a), one easily obtains that:

– when τL 
 τh, δCV [1 − fC(ωτC)] is negligible,
CV (ω) ≈ iCth

V and the decay of Rdens−ther(�q, t) is gov-
erned by

τ0
h = Cth

V

(
λq2

)−1
; (6.10a)

– conversely, when τL � τh, fC(ωτL) 
 1,
CV (ω) ≈ i

[
Cth

V − δCV

]
and the decay time de-

creases to
τ∞
h = C∞

V

(
λq2

)−1
. (6.10b)

The corresponding decrease of the decay time may be im-
portant because, at low temperature, δCV /Cth

V may reach
values as large as 0.5 [37,38].

The results quoted in equations (6.10) are still partly
incorrect because, τ0

h and τ∞
h should not be expressed

through Cth
V and δCV but rather through Cth

P and δCP ,
the corresponding quantities at constant pressure, as well
as through γ∞ (see below). This is because the identi-
fication we performed at the beginning of Section 4 be-
tween P ′

L(�q, ω) and PL(�q, ω) was based on the hypoth-
esis ωτh(q, ω) � 1, which is inconsistent with the long
time regime discussed here. In this regime, the analysis of
Rdens−ther(�q, t) must be performed using P ′

L(�q, ω). This
will result in a renormalisation of τ0

h and another renor-
malisation of τ∞

h , the τL ≈ τh region being probably char-
acterised by a small decrease in the renormalisation factor.

To discuss this point, it is unnecessary to explicitly
introduce the frequency dependence of τh. Thus, we
simply write g(q, ω), equation (3.12), as

g(q, ω) = −iρmTm
β2(ω)
CV (ω)

iωτh

1 + iωτh

≡ c2
i (γ(ω) − 1)

iωτh

1 + iωτh
, (6.11)

where γ(ω = 0) is the ratio γ introduced in equa-
tion (4.8b). Representing here ωρ−1

m ηL(ω) rather than
ωρ−1

m η̃L(ω) by equation (4.22), and neglecting the fre-
quency dependence of β(ω) in equation (2.18b), one easily
obtains

Rdens−ther(�q, ω) ≈
−iβth

q2 [{c2
i +∆2 [1−f(ωτL)]} (1+iωτh)+c2

i (γ(ω) − 1) iωτh]
.

(6.12)

This expression of Rdens−ther(�q, ω) can once again be ap-
proximated in the ωτh ≈ 1 domain in both the τL 
 τh

and the τL � τh cases:

– when τL 
 τh, an easy calculation yields

Rdens−ther(�q, ω) ≈ −iβth

q2c2
i

1
1 + iωγτ0

h

, (6.13a)

γ(ω) taking its ω = 0 value. In this case, the effective
diffusion time is

τ ′0
h = γτ0

h = γCth
V

(
λq2

)−1
, (6.14a)

while, following equation (4.8b), γCth
V = Cth

P : the ther-
mal diffusion is thus governed by Cth

P , in agreement
with [27,32];

– when τL � τh, a similar calculation leads to

Rdens−ther(�q, ω) ≈
−iβth

q2 (c2
i + ∆2)

1

1 + iωτ∞
h

c2
i γ(ω → ∞) + ∆2

c2
i + ∆2

, (6.13b)

whence

τ ′∞
h = τ∞

h

(
γ∞ − ∆2(γ∞ − 1)

c2
i + ∆2

)
, (6.14b)

where we have used the renormalised value of the heat-
diffusion time (cf. Eq. (6.10b)) for this time regime,
and made explicit the renormalisation factor that ap-
plies to that case. If γ does not depend on frequency,
one finds that the renormalisation of τ∞

h is smaller
than that of τ0

h , so that taking proper account of equa-
tion (3.12) would result, not only in the renormalisa-
tion from the specific heat at constant volume to that
at constant pressure, but also in a larger ratio between
the effective heat-diffusion times at high and low tem-
peratures. Even if γ is frequency dependent, as γ∞−1
is a small positive number, the role of equation (6.14b)
if one neglects the frequency dependence of τh(q, ω) is
much less important than the frequency dependence of
the specific heat.

Finally, the frequency dependence of β(ω) adds a convo-
lution product of Rdens−ther(�q, t), as studied above, with
β(t). Writing equation (6.2b) as

β(ω) = iβ∞
[
1 +

δβ

β∞ fβ(ωτL)
]
, (6.15)

the frequency dependence of β(ω) plays a role equivalent
to the r.h.s. of equation (4.23a), a factor which explained
the appearance of the structural relaxation in the long
time part of Rdens−ther(�q, t). β(ω) introduces an addi-
tional channel for coupling this relaxation to the thermal
decay. This channel may be important in the t ≈ τh regime
when τh < τL because the coefficient δβ/β∞ may be of
order unity. Disentangling the effects of CV (ω), β(ω), and
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ηL(ω) in Rdens−ther(�q, t) may thus be an uneasy task in
this t ≈ τh regime.

Let us finally remark that the long time behaviour of
Rdens−ther(�q, t) of glycerol has been recently reanalysed,
after [2], by some of the present authors (A.T and R.T.)
and co-authors in [29]. They used an approximate form of
equations (6.3) in which the dynamics of δρ was ignored,
i.e. the approximation ¯̄σ = 0¯̄I was made in equation (6.3a)
while the coefficients of δρ and ρ̇ were taken equal to zero
in equations (6.3b, 6.3c). Furthermore, in order to take
partly into account the results of equations (6.14), C∞

V was
replaced by C∞

P in equation (6.3b). Similarly to the cal-
culation that led from equations (6.3) to equations (6.1),
one obtains

Rdens−ther(�q, ω) ≈

−iβ∞

(ω∞
B )2

[
1 +

δβ

β∞ f(ωτL)
]

1 + iωτ∞
h

[
1 +

τ0
h − τ∞

h

τ∞
h

f(ωτL)
] , (6.16)

where here fβ(ωτβ) = fC(ωτC) = f(ωτL) because, in
equations (6.3), Yi was taken to be proportional to Xi

whatever i. Good fits were obtained for that long time
part, which suggests that the frequency dependence of
both β(ω) and CV (ω) plays a role in glycerol.

7 Summary

The present paper has presented a consistent phenomeno-
logical approach to HD-TG experiments performed at
small scattering angles in molecular supercooled liquids
formed of linear molecules13.

In Section 2, we have proposed a set of generalised
Navier-Stokes equations which take into account, simulta-
neously:
– the molecular character of the liquid, whence the ad-

dition to the usual set of equations of an additional
equation describing the dynamics of ¯̄Q, a symmet-
rical traceless tensor that represents the mean local
anisotropy of the molecular orientation;

– the existence of a rotation-translation coupling mecha-
nism for these molecules, which couples the strain rate
to ˙̄̄

Q through the rotation-translation coupling func-
tion µ(t);

– the viscoelastic nature of the liquid, which leads to the
introduction of various relaxation processes in these
generalised Navier-Stokes equations.

Furthermore, in each of those equations, a single source
term describes the interaction of the pumps with the liquid
when only density and orientation modulations contribute
to the variation of the dielectric tensor14.
13 We expect our results to be very little modified for
molecules having a higher anisotropy.
14 Other source terms would have to be added if the varia-
tion of the dielectric tensor would also depend, e.g., on the
temperature modulation [27].

Let Rij,kl(�q, t) be the TG dielectric response function
(see Eq. (3.1a)) measured in such an experiment at time t
after an impulse with wavevector �q has been given to the
liquid by the sources at time t = 0, i and j being in-
dices describing, respectively, the polarisation of the probe
and diffracted beams, while k and l describe the polarisa-
tion of the two pumps. We have shown that only six such
response functions exist that are analytically distinct, and
that particular choices for the polarisation of the pumps,
probe, and diffracted beams allow to detect separately five
of them; Section 3 and Appendix C have been devoted to
the computation of the these five response functions. In
the rest of the paper, we have concentrated on the four
response functions that have the specific form Rii,jj(�q, t),
the directions i (or j) being either parallel to the longitu-
dinal phonon, (direction x̂) or perpendicular to the scat-
tering plane (direction ŷ) (see Fig. 1)). The four different
Rii,jj(�q, t) have the form of weighted sums of two terms.

The first term corresponds to the direct orientation of
the molecules by the electric torque owing to the coupling
of the pumps to the anisotropic part of the molecular po-
larisability tensor. This signal could also have been mea-
sured in an Optical Kerr Effect (OKE) experiment so that
we have named this response function ROKE(t).

The second term is the product of three factors in the
frequency space:
– one is the detection mechanism, (see Eq. (3.2)), which

appears as the sum of density (label “dens”) and
molecular orientation (label “or”) modulations;

– the second factor is the propagator of the longitudinal
phonon launched by the three sources;

– the third factor represents the sum of the interaction of
the three sources with the liquid: thermal absorption
(label “ther”), density change (label “dens”) due to
the electrostrictive effect at optical frequencies, and
orientation of the molecules (label “or”) due to the
torque effect, the heat diffusion mechanism appearing
with the thermal absorption.

This second term can thus be split into a weighted sum
of six “elementary response functions”, in short ERFs,
each being specified by two labels, the first one describing
the detection mechanism, and the second the correspond-
ing source. Thus those ERFs will be called, for instance,
Ror−ther(�q, t), or Rdens−or(�q, t).

Section 4 has been totally devoted to the study of
ROKE(t) and, within a certain approximation discussed
in its first section, of the six other ERFs: their time evo-
lution, the relations between some of them and Brillouin-
scattering spectra have been successively studied. In par-
ticular, we have shown that:

(a) any ERF containing a label “or” can be deduced from
the corresponding ERF containing, at the same place,
the label “dens” by a convolution product of the lat-
ter ERF with µ̇(t) (cf., e.g., Eqs. (4.19b, 4.24b)). This
implies that the total information contained in these
six ERFs is concentrated, in fact in Rdens−dens(�q, t),
frequently called the ISBS signal, Rdens−ther(�q, t), the
ISTS signal, and in µ(t), the rotation-translation cou-
pling relaxation function;
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(b) Rdens−dens(�q, t) can be expressed as the time deriva-
tive of the density-density correlation function of the
liquid;

(c) Rdens−ther(�q, t) can be expressed as the convolution
product of Rdens−dens(�q, t) with the relaxation func-
tion describing the thermal diffusion process (see
Eqs. (4.21a, 4.21b)). We have also shown that this
special analytic form allows obtaining information on
the phonon and rotation-translation coupling relax-
ation times on a time scale that extends up to some
10 µs;

(d) for the four possible couples i and j, the weighted
sum of the five ERFs entering the corresponding
Rii,jj(�q, t), and not involving the label “ther”, is pro-
portional to the time derivative of the correlation func-
tion of the diagonal elements of the dielectric function
which have the same indices (see Eqs. (4.33, 4.34)).
We have called this sum the generalised ISBS response
function. Its existence has two consequences. On the
one hand, as the Laplace-Transform of those correla-
tion functions corresponds to Brillouin spectra that
can be recorded using appropriate scattering geome-
tries, those spectra and the generalised ISBS response
function contain exactly the same information. On the
other hand, despite the absence of symmetry between
the sources (indices j) and the detection mechanism
(indices i), the corresponding part of the response
function is symmetrical in those two sets of indices,
a totally non-trivial result;

(e) conversely, the part of Rii,jj(�q, t) involving the label
“ther”, that we have called the generalised ISTS re-
sponse function, is not symmetrical in i and j: the
heat-absorption process breaks the symmetry between
the pumps and the detection mechanism.

Because ROKE(t) has a much shorter duration than the
other ERFs, we have shown, in Section 5, that, in the most
general case, three other ERFs, as well as a weighted sum
of the ISTS and the ISBS signals, can be individually mea-
sured through definite linear combinations of the different
Rii,jj(�q, t). The results are even simpler if either the ISTS
signal, or the ISBS signal, overweighs the other.

A short part of Section 6 has been devoted to a com-
parison between the present approach and former studies
of TG-experiments performed on (molecular) supercooled
liquids. In the rest of that section, we have discussed what
happens to Rdens−dens(�q, t) at very long time and low tem-
perature, when the supercooled liquid becomes already
quite viscous. We have shown that various relaxation pro-
cesses and some effects that have been neglected in Sec-
tion 4 may be involved in the decrease of the effective
heat-diffusion time. Such effects have been experimentally
observed [2,8,11,29] when the structural relaxation time
becomes longer than this diffusion time.

Our study has shown that different effects play a role in
the shape of the polarised HD-TG signal of a supercooled
molecular liquid. It is important to study this signal as
the inverse Laplace-Transform of Rii,jj(�q, ω) to obtain a
physically meaningful interpretation of its time evolution.

Polarisation is necessary to detect the difference be-
tween Rdens−ther(�q, t) and Ror−ther(�q, t), i.e. between the
isotropic and anisotropic parts of the generalised ISTS sig-
nal. Their simultaneous study gives unique information on
the longitudinal relaxation function and on the rotation-
translation coupling function for τanh < τL < τh.

Conversely, the two signals have the same shape for
τL ≈ τh and for τL > τh. In these regions, it is the in-
terplay between the heat-diffusion process and the relax-
ation processes related to the longitudinal relaxation, the
specific heat, and the tension coefficient that governs the
shape of the signal. It will be necessary to study this sig-
nal over a very large time interval (i.e. even for t 
 τh),
and a large temperature region (i.e. even for τL 
 τh)
to disentangle effects that can compete one against the
others.
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sented in this paper. We are also pleased to thank P. Bartolini,
H.Z. Cummins, G. Mayer and R. Di Leonardo, for many fruit-
ful discussions.

Appendix A

We compute here the proportionality factor between the
coefficient K that characterises the electrostrictive effect
at optical frequencies, equation (2.24), and the coeffi-
cient a entering the dielectric tensor fluctuations, equa-
tion (3.2). We also compute the equivalent relation be-
tween the coefficient F characterising the torque produced
by the electric field of the pumps and the anisotropic part
of the molecular polarisability, the coefficient b of the same
equation. This will result in a very simple relationship be-
tween K, F , a and b. We obtain these results by:

– first, directly relating the action of the pumps, sup-
posed to act permanently (g0(t) = constant) on a
transparent liquid (no heat absorption) to their phys-
ical consequences: building up of a permanent peri-
odic density-modulation, δρ0(�r), or of a permanent
orientation-modulation, ¯̄Q0(�r);

– second, obtaining the same result using either equa-
tion (2.24c) or equation (2.28).

The comparison between the results of the two techniques
yields the proportionality coefficients, and finally, a simple
relation, equation (A.16), between these four coefficients,
Λ′, and ρm.

Before starting this calculation, let us point out that
equation (3.2) corresponds to the separation of the po-
larisability fluctuations of the liquid into two parts: an
electronic part, that corresponds to the change of the
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refractive index and which, eventually, leads to density
modulations and an orientational part. In a static elec-
trostrictive experiment, the liquid minimises its energy
with respect to the two mechanisms but one cannot sep-
arate their relative contribution. TG-experiments neces-
sitate this separation both for the detection mechanism
and for the sources. This is why we discuss in Section A.1
an electrostrictive experiment that involves only the elec-
tronic contribution while Section A.2 is devoted to the
similar orientation effect.

A.1 Relationship between a and K

Let χ be the relative susceptibility of the liquid at optical
frequencies. �Eint(�r) creates in the whole liquid a periodic,
permanent, energy density equal to15

Vpot(�r) = −ε0

2
E2χcos qx, (A.1)

where χ is a function of the mass density, ρ(�r). Vpot(�r)
generates, in turn, a density fluctuation, δρ(�r), with the
same period, which further decreases the liquid energy.
This energy-density change reads

δVpot(�r) = −ε0

2
E2ρm

∂χ

∂ρ

)
T

cos qx
δρ(x)
ρm

. (A.2)

As a relative density change is the opposite of a local de-
formation of the liquid ( δρ(x)

ρm
= − dU(x)

dx , where U(x) is the
mean displacement of the molecules in the liquid), δρ(�r)
also increases the local elastic energy density

δVelas(�r) =
ρm

2
c2
i

(
dU(x)

dx

)2

=
ρm

2
c2
i

(
δρ(x)
ρm

)2

. (A.3)

Minimising, at every point, δVpot(�r) + δVelas(�r) with re-
spect to δρ(x)

ρm
yields the equilibrium value, δρ0(x)

c2
i δρ

0(x) =
ε0

2
E2ρm

∂χ

∂ρ

)
T

cos qx. (A.4)

The same result can be obtained from equation (2.24c).
In the permanent regime, there is no thermal modulation,
δT (�r) = 0, and the two time derivatives, �v and ˙̄̄

Q, are also
equal to zero. As the permanent situation corresponds to
the absence of stress in the liquid, this equation reads

c2
i δρ

0(x) − 2KE2 cos qx = 0. (A.5)

Identifying equation (A.4) with equation (A.5) leads, with
the help of the definition a = ∂χ

∂ρ

)
T
, to

K

a
=

ε0

4
ρm. (A.6)

15 In view of the discussion performed in Section 2.4, we chose
E1 and E2 to be equal to E, the two fields having identical
polarisation.

A.2 Relationship between b and F

In a real liquid, the orientational isotropy is an equilib-
rium situation that results from the thermal agitation and
that will eventually be reached whatever is the initial ori-
entational probability distribution. Conversely, the model
represented by equation (2.9) implies the existence of an
instantaneous restoring force characterised by the libra-
tion frequency ωR/2π, ω−1

R being very short with respect
to any other characteristic time of the problem, in par-
ticular the period of the longitudinal phonons. The short
time dynamics of the supercooled liquid can be obtained
by describing it as an isotropic orientational glass with
fixed mean orientation for each molecule. This orientation
can be perturbed by the molecular libration motion and
it is also modified by the coupling of the anisotropic part
of its polarisability tensor to �Eint(�r).

To obtain the relation between F and b, it is sufficient
to consider one particular �Eint(�r). We choose it to result
from fields �E1 and �E2 parallel to ŷ so that

T g
ij(�r) = E2Cij(ŷ) cos qx, (A.7)

and ŷ will also be the polar axis that defines the variable ϑ
of the molecular orientation.

With the definition of b given in equation (3.2), the
energy density at point �r, for molecules with orientation
ϑ, ϕ (orientational probability sin ϑdϑdϕ

4π ) produced by the
polarisation anisotropy of those molecules by �Eint(�r) is

Vorient(�r, ϑ) = −ε0

2
E2nb

(
cos2 ϑ − 1

3

)
cos qx, (A.8)

where n is the number density of the liquid. Vorient plays
for the molecular orientation the same role as Vpot for the
mass density in equation (A.1). The molecules tend to re-
orient by some amount δϑ to minimise their energy with
respect to Vorient. Simultaneously, this change of orien-
tation increases their energy in their vibrational poten-
tial. The equilibrium value, δϑ0(x, ϑ), of the orientational
change generates an anisotropic orientational probabil-
ity, thus a non-zero value, ¯̄Q0(x), of ¯̄Q(x), that we now
compute.

The change in Vorient(�r, ϑ) due to δϑ(x, ϑ) is

δVorient(�r, ϑ) = ε0E
2n b cosϑ sin ϑ cos qx δϑ(x, θ), (A.9)

while the departure from their preferred orientation cor-
responds to an increase of energy density

δVlibr(�r, θ) =
nI

2
ω2

Rδϑ2(x, ϑ), (A.10)

where I is the moment of inertia of the molecule
around an axis perpendicular to its symmetry axis and
passing through its centre of mass. The equilibrium
value, δϑ0(x, θ), is obtained from the minimisation of
δVorient(�r, θ) + δVlibr(�r, θ), which yields

δϑ0(x, ϑ) = −ε0E
2b

I
ω2

Rcosϑ sin ϑcos qx ≡ h0(ϑ, x).

(A.11)
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All the molecules with initial orientation ϑ, ϕ have their
orientation changed into ϑ + h0(ϑ, x), ϕ, and the local
mean value, F (x), of a function F (ϑ, ϕ, x) with this mod-
ified orientational probability is

F (x) =
1
4π

2π∫
0

dϕ

π∫
0

sinϑF
(
ϑ + h0(ϑ, x), ϕ

)
dϑ. (A.12)

By definition, the tensor ¯̄Q(x) is the local mean value of
n ¯̄C(ϑ, ϕ, x). Expanding equation (A.12) up to first order
in h0(ϑ, x) and taking for F the six components of Cij(û),
one obtains

¯̄Q0(x) =
ε0E

2

2
4
5

nb

I
ω2

R
¯̄C(ŷ)cos qx. (A.13)

It was shown in equation (31b) of [23] that Λ′ = 2
5

n
I . The

preceding equation can thus be expressed as

ω2
R

¯̄Q0(x) =
2Λ′

ρm

ε0

2
ρmbE2 ¯̄C(ŷ)cos qx. (A.14a)

The value of ω2
R

¯̄Q0(x) can also be obtained from a direct
use of equation (2.28) in the permanent regime

ω2
R

¯̄Q0(x) = 2FE2 ¯̄C(ŷ)cos qx. (A.14b)

Identification of equation (A.14a) with equation (A.14b)
leads to

ρm

Λ′
F

2b
=

ε0

4
ρm. (A.15)

Comparing equations (A.6, A.15), one finally obtains a
relation between K, F , a, and b

K

a
=

ρm

Λ′
F

2b
=

ε0

4
ρm = S. (A.16)

Appendix B

In a liquid, in absence of non-local effects at the macro-
scopic level, and in the limit of zero absorption, the dielec-
tric function which relates the electric displacement field,
�D(�r, t), to the electric macroscopic field, �E(�r, t), is a local
quantity

�D(�r, t)=ε0

t∫
−∞

dt′
∫

d�r ′ ¯̄ε(�r ′, t′) �E(r̄ ′, t′)δ(�r − �r ′)δ(t − t′),

(B.1)
where ¯̄ε(�r, t) is a symmetrical tensor. At equilibrium, the
spatio-temporal translational invariance of the liquid im-
poses that ¯̄ε(�r, t) depends neither on �r, nor on t

¯̄ε(�r, t) = ¯̄εm, (B.2)

while rotational invariance implies that ¯̄εm is an isotropic
tensor

¯̄εm = εm
¯̄I. (B.3)

When the liquid is perturbed by a time and space vary-
ing fluctuation characterised by the wavevector �q, ¯̄ε(�r, t)
looses its translational symmetry along the direction q̂
and in time but it keeps its rotational symmetry around
q̂. When the Fourier-Transform of ¯̄ε(�r, t), ¯̄ε(�q, t), is ex-
pressed as a response function, equation (3.1a), the ele-
ments Rij,kl(�q, t) of the response function are symmetri-
cal in i and j, by definition of ¯̄ε(�r, t), and in k and l by
construction. There are thus only 6 (ij) and 6 (kl) couples
and thus, at most, 36 different elements of this tensor. But
Rij,kl(�q, t) has a D∞ symmetry along q̂ because of the re-
maining rotational symmetry around this direction and of
the additional symmetry of the source in �q and −�q. More
precisely, if the axes of the system are defined as in Fig-
ure 1, there are only 12 non zero elements, among which
only 7 are different, as indicated in equation (3.1b), be-
cause this symmetry imposes that each index must appear
an even number of times and that the ŷ and ẑ directions
are equivalent but are different of the x̂ direction.

Appendix C

The calculation of Rxy,xy(�q, ω) is simple because the sole
source is the torque on the molecules, the last term
of equation (2.30). There is no temperature modulation
and one must only consider equations (2.5, 2.28). Taking
�E1 = Ex̂ and �E2 = Eŷ, one easily obtains from equa-
tions (2.4, 2.5, 2.7)

ωρmvy(�q, ω) = −qσxy(�q, ω), (C.1)
τxy(�q, t) = −iqvy(�q, t), (C.2)

σxy(�q, ω) = − [qηs(ω)vy(�q, ω) + ωµ(ω)Qxy(�q, ω)] ,
(C.3)

while equation (2.28) yields

Qxy(�q, ω) = −qΛ′r(ω)vy(�q, ω) + i
FE2

2D(ω)
. (C.4)

Solving equations (C.1, C.3) for vy(�q, ω) and injecting the
result into equation (C.4) gives

Qxy(�q, ω) =
iFE2

2

[
D−1(ω) − Λ′ q2

ρm
r(ω)PT (�q, ω)

]
,

(C.5a)
where

PT (�q, ω) =
[
ω2 − q2ρ−1

m ωηT (ω)
]−1

(C.5b)

is the propagator of a transverse phonon with wave vector
q (cf. Eq. (37b) of [23]). One thus obtains, in complete
analogy with the parallel polarisation case,

Rxy,xy(�q, ω) = R(1)
xy,xy(ω) + R(2)

xy,xy(�q, ω), (C.6)

R(1)
xy,xy(ω) = ibD−1(ω)F , (C.7a)

R(2)
xy,xy(�q, ω) = − iΛ′b

ρm
r(ω)PT (q, ω)q2Fr(ω). (C.7b)

Thus, Rxy,xy(�q, t) contains two ERFs. One is ROKE(t), as
in the polarised experiments. The second has a structure
similar to Ror−or(�q, t) but it involves a transverse phonon
instead of longitudinal one.
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Appendix D

We discuss here the form of CV (ω) and β(ω). As has
been proposed by Götze and Latz [39] (see also Franosch
et al. [32]) there are two contributions to the specific heat
at constant volume. One is instantaneous and corresponds
to the degrees of freedom that define the local tempera-
ture (such as the thermal motions of the centres of mass): a
change in temperature corresponds to an immediate trans-
fer of heat to the liquid. In a second step, the internal
degrees of freedom exchange energy with the heat bath to
modify the liquid structure: this takes place on the time
scale of the structural relaxation. To maintain the temper-
ature at its new set value, extra energy has to be given to
the liquid at later times. If δCV (t) is a positive decreasing
function whose limit equals zero for infinite time, the op-
posite of its derivative is also always positive with a zero
limit for infinite time. One can thus write

CV (t) = C∞
V δ(t) − δĊV (t), (D.1)

where C∞
V is a positive quantity. One has by definition

Cth
V ≡

∞∫
0

CV (t)dt = C∞
V + δCV (t = 0). (D.2)

Using equations (4.11a, 4.12c), the Laplace-Transform of
equation (D.1) reads

CV (ω) = iC∞
V − i

(
ωδCV (ω) − δC0

V

)
= iCth

V − iωδCV (ω),
(D.3a)

with
Cth

V = C∞
V + δC0

V . (D.3b)

This general form of equation (D.3a) agrees with the mea-
surements of the frequency dependence of the specific
heat, as performed in different supercooled liquids, where
values of limω→∞ [ωδCV (ω)] of the order of Cth

V /2 have
been reported [37,38] in the vicinity of the liquid-glass
transition. Unfortunately, such measurements correspond
to values of the α-relaxation times longer than 10−4 s and
are not technically feasible for the shorter relaxation times
of interest here. Conversely, theoretical considerations and
numerical calculations predict [40] an important decrease
of limω→∞ [ωδCV (ω)] with increasing temperature while
Cth

V changes very little. Indeed, in a normal liquid, the
disorder is completely taken into account by the normal
degrees of freedom. No extra energy has to be taken into
account, contrary to the case of a supercooled liquid.

A similar analysis can be made for β(ω), leading to a
functional form similar to equation (D.3a). Yet, the signs
of βth and δβ(t) cannot be predicted from a priori consid-
erations. A hint for these quantities can be obtained if we
assume that the relation, valid for normal liquids,

β = c2
i α, (D.4a)

where α is the isobaric thermal expansion coefficient, still
approximately holds when structural relaxation is present

β(t) = c2
i α(t). (D.4b)

Though there is no general rule (water below 4 ◦C is,
in that respect, a well-known counter example), αth and
δα(t) are usually positive.

Appendix E

The decomposition of g(q, ω), equation (3.12), into a form
that allows to pass from the full phonon propagator,
P ′

L(�q, ω), to the usual phonon propagator in the adiabatic
limit, PL(�q, ω), is conveniently performed in two steps.
The first one consists in ignoring the frequency depen-
dence of CV (ω) and β(ω), which reduces them to iCth

V and
iβth, respectively. The classical decomposition of ḡ(q, ω),
the corresponding form of g(q, ω), is described, e.g., in [30]

ḡ(q, ω) = ρmTm

(
βth

)2

Cth
V

[
1 − 1

1 + iωτh(q)

]

= g0 − ρmTm

(
βth

)2

Cth
V

1
1 + iωτh(q)

, (E.1a)

with

τh(q) =
Cth

V

λq2
. (E.1b)

For ωτh(q) � 1, the Brillouin-scattering domain, the r.h.s.
of equation (E.1a) reduces to g0, a quantity that has the
dimension of the square of a velocity. g0 relates ca, the
adiabatic sound velocity ci, the isothermal sound velocity,
through

c2
i = c2

a − g0 = c2
a − ρmTm

(
βth

)2

Cth
V

. (E.2)

This equation describes the coupling of a wave, normally
propagating in an adiabatic regime, with the heat flow.
This coupling decreases the velocity of the wave, the cou-
pling coefficient, βth, appearing twice, as expected. A clas-
sical thermodynamic treatment of the factors entering g0

shows that
g0 = c2

i (γ − 1), (E.3a)
with

γ =
Cth

P

Cth
V

, (E.3b)

where Cth
P is the specific heat at constant pressure. The

structure of the second term of the r.h.s. of equation (E.1a)
shows that the preceding coupling takes place only when
ωτh(q) ≈ 1, in which case

ḡ(q, ω) = iωg0τh(q), (E.4)

and the coupling of the isothermal sound wave with heat
results in a very low frequency damping.

The inclusion of the frequency dependence in CV (ω)
and β(ω) simply adds a third term in the decomposition
of g(q, ω)

g(q, ω) = −iρmTm
β2(0)
CV (0)

− iρmTm

(
β2(ω)
CV (ω)

− β2(0)
CV (0)

)

+ iρmTm
β2(ω)
CV (ω)

1
1 + iωτh(q, ω)

, (E.5)
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where we have replaced βth (respectively Cth
V ) by

−iβ(ω = 0) (respectively −iCV (ω = 0)), see equa-
tions (D.3). Equation (E.5) differs from equation (E.1a)
in only two respects:

– the second term of its r.h.s. represents an additional
contribution to the bulk viscosity, as it has the same
analytical structure as ρ−1

m ωηb(ω). Indeed, this term
is equal to zero for zero-frequency and the results of
Appendix D show that its real part has a finite value
for ωτ � 1. Also, its imaginary part is proportional to
ω at low frequency and tends to zero when ωτ � 1;

– the last terms of equations (E.1, E.5) are identical,
except for a frequency dependence of β(ω), CV (ω)
and τh(q, ω). This simply adds an additional damp-
ing channel and a renormalisation of the heat diffusion
time (see Sect. 6.3).
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